Lesson Overview

Lesson Overview#

import pyvista as pv
from pyvista import examples

mesh = pv.Wavelet()

add_mesh#

When plotting, users must first create a pyvista.Plotter instance (much like a Matplotlib figure). Then data are added to the plotter instance through the pyvista.Plotter.add_mesh() method. This workflow typically looks like:

a lesson figures

You can customize how that mesh is displayed through the parameters of the pyvista.Plotter.add_mesh() method. For example, we can change the colormap via the cmap argument:

p = pv.Plotter()
p.add_mesh(mesh, cmap="coolwarm")
p.show()
a lesson figures

Or show the edges of the mesh with show_edges:

p = pv.Plotter()
p.add_mesh(mesh, show_edges=True)
p.show()
a lesson figures

Or adjust the opacity to be a scalar value or linear transfer function via the opacity argument:

mesh = examples.download_st_helens().warp_by_scalar()

p = pv.Plotter()
p.add_mesh(mesh, cmap="terrain", opacity="linear")
p.show()
a lesson figures

Take a look at all of the options for add_mesh.

The add_mesh method can be called over and over to add different data to the same Plotter scene. For example, we can create many different mesh objects and plot them together:

kinds = [
    "tetrahedron",
    "cube",
    "octahedron",
    "dodecahedron",
    "icosahedron",
]
centers = [
    (0, 1, 0),
    (0, 0, 0),
    (0, 2, 0),
    (-1, 0, 0),
    (-1, 2, 0),
]

solids = [pv.PlatonicSolid(kind, radius=0.4, center=center) for kind, center in zip(kinds, centers)]

p = pv.Plotter(window_size=[1000, 1000])
for _ind, solid in enumerate(solids):
    p.add_mesh(solid, color="silver", specular=1.0, specular_power=10)
p.view_vector((5.0, 2, 3))
p.add_floor("-z", lighting=True, color="tan", pad=1.0)
p.enable_shadows()
p.show()
a lesson figures

Subplotting#

Creating side-by-side comparisons of datasets is easy with PyVista’s subplotting API. Get started by specifying the shape of the pyvista.Plotter object then registering the active subplot by the pyvista.Plotter.subplot() method much like how you subplot with Matplotlib’s API.

a lesson figures

Below is an example of side-by-side comparisons of the contours and slices of a single dataset.

Tip

You can link the cameras of both views with the pyvista.Plotter.link_views() method

a lesson figures

Axes and Bounds#

Axes can be added to the scene with pyvista.Plotter.show_axes()

mesh = examples.load_random_hills()

p = pv.Plotter()
p.add_mesh(mesh)
p.show_axes()
p.show()
a lesson figures

And bounds similarly with pyvista.Plotter.show_bounds()

Tip

See Plotting Bounds for more details.

a lesson figures
Open In Colab

Total running time of the script: (0 minutes 4.901 seconds)

Gallery generated by Sphinx-Gallery