Creating a Uniform Grid#

Create a simple uniform grid from a 3D NumPy array of values.

import numpy as np
import pyvista as pv

Take a 3D NumPy array of data values that holds some spatial data where each axis corresponds to the XYZ cartesian axes. This example will create a pyvista.UniformGrid object that will hold the spatial reference for a 3D grid which a 3D NumPy array of values can be plotted against.

Create the 3D NumPy array of spatially referenced data. This is spatially referenced such that the grid is 20 by 5 by 10 (nx by ny by nz)

values = np.linspace(0, 10, 1000).reshape((20, 5, 10))
values.shape
(20, 5, 10)

Create the PyVista object

Set the grid dimensions: shape + 1 because we want to inject our values on

the CELL data

grid.dimensions = np.array(values.shape) + 1

Edit the spatial reference

grid.origin = (100, 33, 55.6)  # The bottom left corner of the data set
grid.spacing = (1, 5, 2)  # These are the cell sizes along each axis

Add the data values to the cell data

grid.cell_data["values"] = values.flatten(order="F")  # Flatten the array!
grid
HeaderData Arrays
UniformGridInformation
N Cells1000
N Points1386
X Bounds1.000e+02, 1.200e+02
Y Bounds3.300e+01, 5.800e+01
Z Bounds5.560e+01, 7.560e+01
Dimensions21, 6, 11
Spacing1.000e+00, 5.000e+00, 2.000e+00
N Arrays1
NameFieldTypeN CompMinMax
valuesCellsfloat6410.000e+001.000e+01


Now plot the grid!

grid.plot(show_edges=True)
c create uniform grid

Don’t like cell data? You could also add the NumPy array to the point data of a pyvista.UniformGrid. Take note of the subtle difference when setting the grid dimensions upon initialization.

# Create the 3D NumPy array of spatially referenced data
# This is spatially referenced such that the grid is 20 by 5 by 10
#   (nx by ny by nz)
values = np.linspace(0, 10, 1000).reshape((20, 5, 10))
values.shape
(20, 5, 10)

Create the PyVista object and set the same attributes like above

grid = pv.UniformGrid()

# Set the grid dimensions: shape because we want to inject our values on the
#   POINT data
grid.dimensions = values.shape

# Edit the spatial reference
grid.origin = (100, 33, 55.6)  # The bottom left corner of the data set
grid.spacing = (1, 5, 2)  # These are the cell sizes along each axis

Add the data values to the cell data

grid.point_data["values"] = values.flatten(order="F")  # Flatten the array!
grid
HeaderData Arrays
UniformGridInformation
N Cells684
N Points1000
X Bounds1.000e+02, 1.190e+02
Y Bounds3.300e+01, 5.300e+01
Z Bounds5.560e+01, 7.360e+01
Dimensions20, 5, 10
Spacing1.000e+00, 5.000e+00, 2.000e+00
N Arrays1
NameFieldTypeN CompMinMax
valuesPointsfloat6410.000e+001.000e+01


Now plot the grid!

grid.plot(show_edges=True)
c create uniform grid

Exercise#

Now create your own pyvista.UniformGrid from a 3D NumPy array!

Help on class UniformGrid in module pyvista.core.grid:

class UniformGrid(vtkmodules.vtkCommonDataModel.vtkImageData, Grid, pyvista.core.filters.uniform_grid.UniformGridFilters)
 |  UniformGrid(uinput=None, *args, dimensions=None, spacing=(1.0, 1.0, 1.0), origin=(0.0, 0.0, 0.0), deep=False, **kwargs)
 |
 |  Models datasets with uniform spacing in the three coordinate directions.
 |
 |  Can be initialized in one of several ways:
 |
 |  - Create empty grid
 |  - Initialize from a vtk.vtkImageData object
 |  - Initialize based on dimensions, cell spacing, and origin.
 |
 |  .. versionchanged:: 0.33.0
 |      First argument must now be either a path or
 |      ``vtk.vtkImageData``. Use keyword arguments to specify the
 |      dimensions, spacing, and origin of the uniform grid.
 |
 |  .. versionchanged:: 0.37.0
 |      The ``dims`` parameter has been renamed to ``dimensions``.
 |
 |  Parameters
 |  ----------
 |  uinput : str, vtk.vtkImageData, pyvista.UniformGrid, optional
 |      Filename or dataset to initialize the uniform grid from.  If
 |      set, remainder of arguments are ignored.
 |
 |  dimensions : iterable, optional
 |      Dimensions of the uniform grid.
 |
 |  spacing : iterable, optional
 |      Spacing of the uniform in each dimension.  Defaults to
 |      ``(1.0, 1.0, 1.0)``. Must be positive.
 |
 |  origin : iterable, optional
 |      Origin of the uniform grid.  Defaults to ``(0.0, 0.0, 0.0)``.
 |
 |  deep : bool, optional
 |      Whether to deep copy a ``vtk.vtkImageData`` object.
 |      Default is ``False``.  Keyword only.
 |
 |  Examples
 |  --------
 |  Create an empty UniformGrid.
 |
 |  >>> import pyvista
 |  >>> grid = pyvista.UniformGrid()
 |
 |  Initialize from a ``vtk.vtkImageData`` object.
 |
 |  >>> import vtk
 |  >>> vtkgrid = vtk.vtkImageData()
 |  >>> grid = pyvista.UniformGrid(vtkgrid)
 |
 |  Initialize using using just the grid dimensions and default
 |  spacing and origin. These must be keyword arguments.
 |
 |  >>> grid = pyvista.UniformGrid(dimensions=(10, 10, 10))
 |
 |  Initialize using dimensions and spacing.
 |
 |  >>> grid = pyvista.UniformGrid(
 |  ...     dimensions=(10, 10, 10),
 |  ...     spacing=(2, 1, 5),
 |  ... )
 |
 |  Initialize using dimensions, spacing, and an origin.
 |
 |  >>> grid = pyvista.UniformGrid(
 |  ...     dimensions=(10, 10, 10),
 |  ...     spacing=(2, 1, 5),
 |  ...     origin=(10, 35, 50),
 |  ... )
 |
 |  Initialize from another UniformGrid.
 |
 |  >>> grid = pyvista.UniformGrid(
 |  ...     dimensions=(10, 10, 10),
 |  ...     spacing=(2, 1, 5),
 |  ...     origin=(10, 35, 50),
 |  ... )
 |  >>> grid_from_grid = pyvista.UniformGrid(grid)
 |  >>> grid_from_grid == grid
 |  True
 |
 |  Method resolution order:
 |      UniformGrid
 |      vtkmodules.vtkCommonDataModel.vtkImageData
 |      vtkmodules.vtkCommonDataModel.vtkDataSet
 |      vtkmodules.vtkCommonDataModel.vtkDataObject
 |      vtkmodules.vtkCommonCore.vtkObject
 |      vtkmodules.vtkCommonCore.vtkObjectBase
 |      Grid
 |      pyvista.core.dataset.DataSet
 |      pyvista.core.filters.uniform_grid.UniformGridFilters
 |      pyvista.core.filters.data_set.DataSetFilters
 |      pyvista.core.dataobject.DataObject
 |      builtins.object
 |
 |  Methods defined here:
 |
 |  __init__(self, uinput=None, *args, dimensions=None, spacing=(1.0, 1.0, 1.0), origin=(0.0, 0.0, 0.0), deep=False, **kwargs)
 |      Initialize the uniform grid.
 |
 |  __repr__(self)
 |      Return the default representation.
 |
 |  __str__(self)
 |      Return the default str representation.
 |
 |  cast_to_rectilinear_grid(self) -> 'RectilinearGrid'
 |      Cast this uniform grid to a rectilinear grid.
 |
 |      Returns
 |      -------
 |      pyvista.RectilinearGrid
 |          This uniform grid as a rectilinear grid.
 |
 |  cast_to_structured_grid(self) -> 'pyvista.StructuredGrid'
 |      Cast this uniform grid to a structured grid.
 |
 |      Returns
 |      -------
 |      pyvista.StructuredGrid
 |          This grid as a structured grid.
 |
 |  to_tetrahedra(self, tetra_per_cell: int = 5, mixed: Union[Sequence[int], bool] = False, pass_cell_ids: bool = False, progress_bar: bool = False)
 |      Create a tetrahedral mesh structured grid.
 |
 |      Parameters
 |      ----------
 |      tetra_per_cell : int, default: 5
 |          The number of tetrahedrons to divide each cell into. Can be
 |          either ``5``, ``6``, or ``12``. If ``mixed=True``, this value is
 |          overridden.
 |
 |      mixed : str, bool, sequence, default: False
 |          When set, subdivides some cells into 5 and some cells into 12. Set
 |          to ``True`` to use the active cell scalars of the
 |          :class:`pyvista.RectilinearGrid` to be either 5 or 12 to
 |          determining the number of tetrahedra to generate per cell.
 |
 |          When a sequence, uses these values to subdivide the cells. When a
 |          string uses a cell array rather than the active array to determine
 |          the number of tetrahedra to generate per cell.
 |
 |      pass_cell_ids : bool, default: False
 |          Set to ``True`` to make the tetrahedra have scalar data indicating
 |          which cell they came from in the original
 |          :class:`pyvista.RectilinearGrid`.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.UnstructuredGrid
 |          UnstructuredGrid containing the tetrahedral cells.
 |
 |      Examples
 |      --------
 |      Divide a rectangular grid into tetrahedrons. Each cell contains by
 |      default 5 tetrahedrons.
 |
 |      First, create and plot the grid.
 |
 |      >>> import numpy as np
 |      >>> import pyvista as pv
 |      >>> xrng = np.linspace(0, 1, 2)
 |      >>> yrng = np.linspace(0, 1, 2)
 |      >>> zrng = np.linspace(0, 2, 3)
 |      >>> grid = pv.RectilinearGrid(xrng, yrng, zrng)
 |      >>> grid.plot()
 |
 |      Now, generate the tetrahedra plot in the exploded view of the cell.
 |
 |      >>> tet_grid = grid.to_tetrahedra()
 |      >>> tet_grid.explode(factor=0.5).plot(show_edges=True)
 |
 |      Take the same grid but divide the first cell into 5 cells and the other
 |      cell into 12 tetrahedrons per cell.
 |
 |      >>> tet_grid = grid.to_tetrahedra(mixed=[5, 12])
 |      >>> tet_grid.explode(factor=0.5).plot(show_edges=True)
 |
 |  ----------------------------------------------------------------------
 |  Readonly properties defined here:
 |
 |  x
 |      Return all the X points.
 |
 |      Examples
 |      --------
 |      >>> import pyvista
 |      >>> grid = pyvista.UniformGrid(dimensions=(2, 2, 2))
 |      >>> grid.x
 |      array([0., 1., 0., 1., 0., 1., 0., 1.])
 |
 |  y
 |      Return all the Y points.
 |
 |      Examples
 |      --------
 |      >>> import pyvista
 |      >>> grid = pyvista.UniformGrid(dimensions=(2, 2, 2))
 |      >>> grid.y
 |      array([0., 0., 1., 1., 0., 0., 1., 1.])
 |
 |  z
 |      Return all the Z points.
 |
 |      Examples
 |      --------
 |      >>> import pyvista
 |      >>> grid = pyvista.UniformGrid(dimensions=(2, 2, 2))
 |      >>> grid.z
 |      array([0., 0., 0., 0., 1., 1., 1., 1.])
 |
 |  ----------------------------------------------------------------------
 |  Data descriptors defined here:
 |
 |  extent
 |      Return or set the extent of the UniformGrid.
 |
 |      The extent is simply the first and last indices for each of the three axes.
 |
 |      Examples
 |      --------
 |      Create a ``UniformGrid`` and show its extent.
 |
 |      >>> import pyvista
 |      >>> grid = pyvista.UniformGrid(dimensions=(10, 10, 10))
 |      >>> grid.extent
 |      (0, 9, 0, 9, 0, 9)
 |
 |      >>> grid.extent = (2, 5, 2, 5, 2, 5)
 |      >>> grid.extent
 |      (2, 5, 2, 5, 2, 5)
 |
 |      Note how this also modifies the grid bounds and dimensions. Since we
 |      use default spacing of 1 here, the bounds match the extent exactly.
 |
 |      >>> grid.bounds
 |      (2.0, 5.0, 2.0, 5.0, 2.0, 5.0)
 |      >>> grid.dimensions
 |      (4, 4, 4)
 |
 |  origin
 |      Return the origin of the grid (bottom southwest corner).
 |
 |      Examples
 |      --------
 |      >>> import pyvista
 |      >>> grid = pyvista.UniformGrid(dimensions=(5, 5, 5))
 |      >>> grid.origin
 |      (0.0, 0.0, 0.0)
 |
 |      Show how the origin is in the bottom "southwest" corner of the
 |      UniformGrid.
 |
 |      >>> pl = pyvista.Plotter()
 |      >>> _ = pl.add_mesh(grid, show_edges=True)
 |      >>> _ = pl.add_axes_at_origin(ylabel=None)
 |      >>> pl.camera_position = 'xz'
 |      >>> pl.show()
 |
 |      Set the origin to ``(1, 1, 1)`` and show how this shifts the
 |      UniformGrid.
 |
 |      >>> grid.origin = (1, 1, 1)
 |      >>> pl = pyvista.Plotter()
 |      >>> _ = pl.add_mesh(grid, show_edges=True)
 |      >>> _ = pl.add_axes_at_origin(ylabel=None)
 |      >>> pl.camera_position = 'xz'
 |      >>> pl.show()
 |
 |  points
 |      Build a copy of the implicitly defined points as a numpy array.
 |
 |      Notes
 |      -----
 |      The ``points`` for a :class:`pyvista.UniformGrid` cannot be set.
 |
 |      Examples
 |      --------
 |      >>> import pyvista
 |      >>> grid = pyvista.UniformGrid(dimensions=(2, 2, 2))
 |      >>> grid.points
 |      array([[0., 0., 0.],
 |             [1., 0., 0.],
 |             [0., 1., 0.],
 |             [1., 1., 0.],
 |             [0., 0., 1.],
 |             [1., 0., 1.],
 |             [0., 1., 1.],
 |             [1., 1., 1.]])
 |
 |  spacing
 |      Return or set the spacing for each axial direction.
 |
 |      Notes
 |      -----
 |      Spacing must be non-negative. While VTK accepts negative
 |      spacing, this results in unexpected behavior. See:
 |      https://github.com/pyvista/pyvista/issues/1967
 |
 |      Examples
 |      --------
 |      Create a 5 x 5 x 5 uniform grid.
 |
 |      >>> import pyvista
 |      >>> grid = pyvista.UniformGrid(dimensions=(5, 5, 5))
 |      >>> grid.spacing
 |      (1.0, 1.0, 1.0)
 |      >>> grid.plot(show_edges=True)
 |
 |      Modify the spacing to ``(1, 2, 3)``
 |
 |      >>> grid.spacing = (1, 2, 3)
 |      >>> grid.plot(show_edges=True)
 |
 |  ----------------------------------------------------------------------
 |  Methods inherited from vtkmodules.vtkCommonDataModel.vtkImageData:
 |
 |  AllocateScalars(...)
 |      AllocateScalars(self, dataType:int, numComponents:int) -> None
 |      C++: virtual void AllocateScalars(int dataType, int numComponents)
 |      AllocateScalars(self, pipeline_info:vtkInformation) -> None
 |      C++: virtual void AllocateScalars(vtkInformation *pipeline_info)
 |
 |      Allocate the point scalars for this dataset. The data type
 |      determines the type of the array (VTK_FLOAT, VTK_INT etc.) where
 |      as numComponents determines its number of components.
 |
 |  ComputeBounds(...)
 |      ComputeBounds(self) -> None
 |      C++: void ComputeBounds() override;
 |
 |      Compute the data bounding box from data points. THIS METHOD IS
 |      NOT THREAD SAFE.
 |
 |  ComputeCellId(...)
 |      ComputeCellId(self, ijk:[int, int, int]) -> int
 |      C++: virtual vtkIdType ComputeCellId(int ijk[3])
 |
 |      Given a location in structured coordinates (i-j-k), return the
 |      cell id.
 |
 |  ComputeIndexToPhysicalMatrix(...)
 |      ComputeIndexToPhysicalMatrix(origin:(float, float, float),
 |          spacing:(float, float, float), direction:(float, float, float,
 |           float, float, float, float, float, float), result:[float,
 |          float, float, float, float, float, float, float, float, float,
 |           float, float, float, float, float, float]) -> None
 |      C++: static void ComputeIndexToPhysicalMatrix(
 |          double const origin[3], double const spacing[3],
 |          double const direction[9], double result[16])
 |
 |  ComputeInternalExtent(...)
 |      ComputeInternalExtent(self, intExt:[int, ...], tgtExt:[int, ...],
 |          bnds:[int, ...]) -> None
 |      C++: void ComputeInternalExtent(int *intExt, int *tgtExt,
 |          int *bnds)
 |
 |      Given how many pixel are required on a side for bounrary
 |      conditions (in bnds), the target extent to traverse, compute the
 |      internal extent (the extent for this ImageData that does not
 |      suffer from any boundary conditions) and place it in intExt
 |
 |  ComputePointId(...)
 |      ComputePointId(self, ijk:[int, int, int]) -> int
 |      C++: virtual vtkIdType ComputePointId(int ijk[3])
 |
 |      Given a location in structured coordinates (i-j-k), return the
 |      point id.
 |
 |  ComputeStructuredCoordinates(...)
 |      ComputeStructuredCoordinates(self, x:(float, float, float),
 |          ijk:[int, int, int], pcoords:[float, float, float]) -> int
 |      C++: virtual int ComputeStructuredCoordinates(const double x[3],
 |          int ijk[3], double pcoords[3])
 |
 |      Convenience function computes the structured coordinates for a
 |      point x[3]. The voxel is specified by the array ijk[3], and the
 |      parametric coordinates in the cell are specified with pcoords[3].
 |      The function returns a 0 if the point x is outside of the volume,
 |      and a 1 if inside the volume.
 |
 |  CopyAndCastFrom(...)
 |      CopyAndCastFrom(self, inData:vtkImageData, extent:[int, int, int,
 |          int, int, int]) -> None
 |      C++: virtual void CopyAndCastFrom(vtkImageData *inData,
 |          int extent[6])
 |      CopyAndCastFrom(self, inData:vtkImageData, x0:int, x1:int, y0:int,
 |           y1:int, z0:int, z1:int) -> None
 |      C++: virtual void CopyAndCastFrom(vtkImageData *inData, int x0,
 |          int x1, int y0, int y1, int z0, int z1)
 |
 |      This method is passed a input and output region, and executes the
 |      filter algorithm to fill the output from the input. It just
 |      executes a switch statement to call the correct function for the
 |      regions data types.
 |
 |  CopyInformationFromPipeline(...)
 |      CopyInformationFromPipeline(self, information:vtkInformation)
 |          -> None
 |      C++: void CopyInformationFromPipeline(vtkInformation *information)
 |           override;
 |
 |      Override these to handle origin, spacing, scalar type, and scalar
 |      number of components.  See vtkDataObject for details.
 |
 |  CopyInformationToPipeline(...)
 |      CopyInformationToPipeline(self, information:vtkInformation)
 |          -> None
 |      C++: void CopyInformationToPipeline(vtkInformation *information)
 |          override;
 |
 |      Copy information from this data object to the pipeline
 |      information. This is used by the vtkTrivialProducer that is
 |      created when someone calls SetInputData() to connect the image to
 |      a pipeline.
 |
 |  CopyStructure(...)
 |      CopyStructure(self, ds:vtkDataSet) -> None
 |      C++: void CopyStructure(vtkDataSet *ds) override;
 |
 |      Copy the geometric and topological structure of an input image
 |      data object.
 |
 |  Crop(...)
 |      Crop(self, updateExtent:(int, ...)) -> None
 |      C++: void Crop(const int *updateExtent) override;
 |
 |      Reallocates and copies to set the Extent to updateExtent. This is
 |      used internally when the exact extent is requested, and the
 |      source generated more than the update extent.
 |
 |  DeepCopy(...)
 |      DeepCopy(self, src:vtkDataObject) -> None
 |      C++: void DeepCopy(vtkDataObject *src) override;
 |
 |  ExtendedNew(...)
 |      ExtendedNew() -> vtkImageData
 |      C++: static vtkImageData *ExtendedNew()
 |
 |  FindAndGetCell(...)
 |      FindAndGetCell(self, x:[float, float, float], cell:vtkCell,
 |          cellId:int, tol2:float, subId:int, pcoords:[float, float,
 |          float], weights:[float, ...]) -> vtkCell
 |      C++: vtkCell *FindAndGetCell(double x[3], vtkCell *cell,
 |          vtkIdType cellId, double tol2, int &subId, double pcoords[3],
 |          double *weights) override;
 |
 |      Locate the cell that contains a point and return the cell. Also
 |      returns the subcell id, parametric coordinates and weights for
 |      subsequent interpolation. This method combines the derived class
 |      methods int FindCell and vtkCell *GetCell. Derived classes may
 |      provide a more efficient implementation. See for example
 |      vtkStructuredPoints. THIS METHOD IS NOT THREAD SAFE.
 |
 |  FindCell(...)
 |      FindCell(self, x:[float, float, float], cell:vtkCell, cellId:int,
 |          tol2:float, subId:int, pcoords:[float, float, float],
 |          weights:[float, ...]) -> int
 |      C++: vtkIdType FindCell(double x[3], vtkCell *cell,
 |          vtkIdType cellId, double tol2, int &subId, double pcoords[3],
 |          double *weights) override;
 |      FindCell(self, x:[float, float, float], cell:vtkCell,
 |          gencell:vtkGenericCell, cellId:int, tol2:float, subId:int,
 |          pcoords:[float, float, float], weights:[float, ...]) -> int
 |      C++: vtkIdType FindCell(double x[3], vtkCell *cell,
 |          vtkGenericCell *gencell, vtkIdType cellId, double tol2,
 |          int &subId, double pcoords[3], double *weights) override;
 |
 |      Locate cell based on global coordinate x and tolerance squared.
 |      If cell and cellId is non-nullptr, then search starts from this
 |      cell and looks at immediate neighbors.  Returns cellId >= 0 if
 |      inside, < 0 otherwise.  The parametric coordinates are provided
 |      in pcoords[3]. The interpolation weights are returned in
 |      weights[]. (The number of weights is equal to the number of
 |      points in the found cell). Tolerance is used to control how close
 |      the point is to be considered "in" the cell. THIS METHOD IS NOT
 |      THREAD SAFE.
 |
 |  FindPoint(...)
 |      FindPoint(self, x:float, y:float, z:float) -> int
 |      C++: virtual vtkIdType FindPoint(double x, double y, double z)
 |      FindPoint(self, x:[float, float, float]) -> int
 |      C++: vtkIdType FindPoint(double x[3]) override;
 |
 |      Locate the closest point to the global coordinate x. Return the
 |      point id. If point id < 0; then no point found. (This may arise
 |      when point is outside of dataset.) THIS METHOD IS THREAD SAFE IF
 |      FIRST CALLED FROM A SINGLE THREAD AND THE DATASET IS NOT MODIFIED
 |
 |  GetActualMemorySize(...)
 |      GetActualMemorySize(self) -> int
 |      C++: unsigned long GetActualMemorySize() override;
 |
 |      Return the actual size of the data in kibibytes (1024 bytes).
 |      This number is valid only after the pipeline has updated. The
 |      memory size returned is guaranteed to be greater than or equal to
 |      the memory required to represent the data (e.g., extra space in
 |      arrays, etc. are not included in the return value). THIS METHOD
 |      IS THREAD SAFE.
 |
 |  GetArrayIncrements(...)
 |      GetArrayIncrements(self, array:vtkDataArray, increments:[int, int,
 |           int]) -> None
 |      C++: void GetArrayIncrements(vtkDataArray *array,
 |          vtkIdType increments[3])
 |
 |      Since various arrays have different number of components, the
 |      will have different increments.
 |
 |  GetArrayPointer(...)
 |      GetArrayPointer(self, array:vtkDataArray, coordinates:[int, int,
 |          int]) -> Pointer
 |      C++: void *GetArrayPointer(vtkDataArray *array,
 |          int coordinates[3])
 |
 |  GetArrayPointerForExtent(...)
 |      GetArrayPointerForExtent(self, array:vtkDataArray, extent:[int,
 |          int, int, int, int, int]) -> Pointer
 |      C++: void *GetArrayPointerForExtent(vtkDataArray *array,
 |          int extent[6])
 |
 |      These are convenience methods for getting a pointer from any
 |      filed array.  It is a start at expanding image filters to process
 |      any array (not just scalars).
 |
 |  GetAxisUpdateExtent(...)
 |      GetAxisUpdateExtent(self, axis:int, min:int, max:int,
 |          updateExtent:(int, ...)) -> None
 |      C++: virtual void GetAxisUpdateExtent(int axis, int &min,
 |          int &max, const int *updateExtent)
 |
 |  GetCell(...)
 |      GetCell(self, cellId:int) -> vtkCell
 |      C++: vtkCell *GetCell(vtkIdType cellId) override;
 |      GetCell(self, i:int, j:int, k:int) -> vtkCell
 |      C++: vtkCell *GetCell(int i, int j, int k) override;
 |      GetCell(self, cellId:int, cell:vtkGenericCell) -> None
 |      C++: void GetCell(vtkIdType cellId, vtkGenericCell *cell)
 |          override;
 |
 |      Get cell with cellId such that: 0 <= cellId < NumberOfCells. The
 |      returned vtkCell is an object owned by this instance, hence the
 |      return value must not be deleted by the caller.
 |
 |      @warning Repeat calls to this function for different face ids
 |          will change
 |      the data stored in the internal member object whose pointer is
 |      returned by this function.
 |
 |      @warning THIS METHOD IS NOT THREAD SAFE. For a thread-safe
 |          version, please use
 |      void GetCell(vtkIdType cellId, vtkGenericCell* cell).
 |
 |  GetCellBounds(...)
 |      GetCellBounds(self, cellId:int, bounds:[float, float, float,
 |          float, float, float]) -> None
 |      C++: void GetCellBounds(vtkIdType cellId, double bounds[6])
 |          override;
 |
 |      Get the bounds of the cell with cellId such that: 0 <= cellId <
 |      NumberOfCells. A subclass may be able to determine the bounds of
 |      cell without using an expensive GetCell() method. A default
 |      implementation is provided that actually uses a GetCell() call.
 |      This is to ensure the method is available to all datasets.
 |      Subclasses should override this method to provide an efficient
 |      implementation. THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A
 |      SINGLE THREAD AND THE DATASET IS NOT MODIFIED
 |
 |  GetCellDims(...)
 |      GetCellDims(self, cellDims:[int, int, int]) -> None
 |      C++: void GetCellDims(int cellDims[3])
 |
 |      Given the node dimensions of this grid instance, this method
 |      computes the node dimensions. The value in each dimension can
 |      will have a lowest value of "1" such that computing the total
 |      number of cells can be achieved by simply by
 |      cellDims[0]*cellDims[1]*cellDims[2].
 |
 |  GetCellNeighbors(...)
 |      GetCellNeighbors(self, cellId:int, ptIds:vtkIdList,
 |          cellIds:vtkIdList) -> None
 |      C++: void GetCellNeighbors(vtkIdType cellId, vtkIdList *ptIds,
 |          vtkIdList *cellIds) override;
 |      GetCellNeighbors(self, cellId:int, ptIds:vtkIdList,
 |          cellIds:vtkIdList, seedLoc:[int, ...]) -> None
 |      C++: void GetCellNeighbors(vtkIdType cellId, vtkIdList *ptIds,
 |          vtkIdList *cellIds, int *seedLoc)
 |
 |      Topological inquiry to get all cells using list of points
 |      exclusive of cell specified (e.g., cellId). Note that the list
 |      consists of only cells that use ALL the points provided. THIS
 |      METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND
 |      THE DATASET IS NOT MODIFIED
 |
 |  GetCellPoints(...)
 |      GetCellPoints(self, cellId:int, ptIds:vtkIdList) -> None
 |      C++: void GetCellPoints(vtkIdType cellId, vtkIdList *ptIds)
 |          override;
 |
 |      Topological inquiry to get points defining cell. THIS METHOD IS
 |      THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND THE DATASET
 |      IS NOT MODIFIED
 |
 |  GetCellType(...)
 |      GetCellType(self, cellId:int) -> int
 |      C++: int GetCellType(vtkIdType cellId) override;
 |
 |      Get type of cell with cellId such that: 0 <= cellId <
 |      NumberOfCells. THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A
 |      SINGLE THREAD AND THE DATASET IS NOT MODIFIED
 |
 |  GetContinuousIncrements(...)
 |      GetContinuousIncrements(self, extent:[int, int, int, int, int,
 |          int], incX:int, incY:int, incZ:int) -> None
 |      C++: virtual void GetContinuousIncrements(int extent[6],
 |          vtkIdType &incX, vtkIdType &incY, vtkIdType &incZ)
 |      GetContinuousIncrements(self, scalars:vtkDataArray, extent:[int,
 |          int, int, int, int, int], incX:int, incY:int, incZ:int)
 |          -> None
 |      C++: virtual void GetContinuousIncrements(vtkDataArray *scalars,
 |          int extent[6], vtkIdType &incX, vtkIdType &incY,
 |          vtkIdType &incZ)
 |
 |      Different ways to get the increments for moving around the data.
 |      incX is always returned with 0.  incY is returned with the
 |      increment needed to move from the end of one X scanline of data
 |      to the start of the next line.  incZ is filled in with the
 |      increment needed to move from the end of one image to the start
 |      of the next.  The proper way to use these values is to for a loop
 |      over Z, Y, X, C, incrementing the pointer by 1 after each
 |      component.  When the end of the component is reached, the pointer
 |      is set to the beginning of the next pixel, thus incX is properly
 |      set to 0. The first form of GetContinuousIncrements uses the
 |      active scalar field while the second form allows the scalar array
 |      to be passed in.
 |
 |  GetData(...)
 |      GetData(info:vtkInformation) -> vtkImageData
 |      C++: static vtkImageData *GetData(vtkInformation *info)
 |      GetData(v:vtkInformationVector, i:int=0) -> vtkImageData
 |      C++: static vtkImageData *GetData(vtkInformationVector *v,
 |          int i=0)
 |
 |      Retrieve an instance of this class from an information object.
 |
 |  GetDataDimension(...)
 |      GetDataDimension(self) -> int
 |      C++: virtual int GetDataDimension()
 |
 |      Return the dimensionality of the data.
 |
 |  GetDataObjectType(...)
 |      GetDataObjectType(self) -> int
 |      C++: int GetDataObjectType() override;
 |
 |      Return what type of dataset this is.
 |
 |  GetDimensions(...)
 |      GetDimensions(self) -> (int, int, int)
 |      C++: virtual int *GetDimensions()
 |      GetDimensions(self, dims:[int, int, int]) -> None
 |      C++: virtual void GetDimensions(int dims[3])
 |      GetDimensions(self, dims:[int, int, int]) -> None
 |      C++: virtual void GetDimensions(vtkIdType dims[3])
 |
 |      Get dimensions of this structured points dataset. It is the
 |      number of points on each axis. Dimensions are computed from
 |      Extents during this call.
 |      \warning Non thread-safe, use second signature if you want it to
 |          be.
 |
 |  GetDirectionMatrix(...)
 |      GetDirectionMatrix(self) -> vtkMatrix3x3
 |      C++: virtual vtkMatrix3x3 *GetDirectionMatrix()
 |
 |      Set/Get the direction transform of the dataset. The direction
 |      matrix is a 3x3 transformation matrix supporting scaling and
 |      rotation.
 |
 |  GetExtent(...)
 |      GetExtent(self) -> (int, int, int, int, int, int)
 |      C++: virtual int *GetExtent()
 |
 |  GetExtentType(...)
 |      GetExtentType(self) -> int
 |      C++: int GetExtentType() override;
 |
 |      The extent type is a 3D extent
 |
 |  GetIncrements(...)
 |      GetIncrements(self) -> (int, int, int)
 |      C++: virtual vtkIdType *GetIncrements()
 |      GetIncrements(self, incX:int, incY:int, incZ:int) -> None
 |      C++: virtual void GetIncrements(vtkIdType &incX, vtkIdType &incY,
 |          vtkIdType &incZ)
 |      GetIncrements(self, inc:[int, int, int]) -> None
 |      C++: virtual void GetIncrements(vtkIdType inc[3])
 |      GetIncrements(self, scalars:vtkDataArray) -> (int, int, int)
 |      C++: virtual vtkIdType *GetIncrements(vtkDataArray *scalars)
 |      GetIncrements(self, scalars:vtkDataArray, incX:int, incY:int,
 |          incZ:int) -> None
 |      C++: virtual void GetIncrements(vtkDataArray *scalars,
 |          vtkIdType &incX, vtkIdType &incY, vtkIdType &incZ)
 |      GetIncrements(self, scalars:vtkDataArray, inc:[int, int, int])
 |          -> None
 |      C++: virtual void GetIncrements(vtkDataArray *scalars,
 |          vtkIdType inc[3])
 |
 |      Different ways to get the increments for moving around the data.
 |      GetIncrements() calls ComputeIncrements() to ensure the
 |      increments are up to date.  The first three methods compute the
 |      increments based on the active scalar field while the next three,
 |      the scalar field is passed in.
 |
 |  GetIndexToPhysicalMatrix(...)
 |      GetIndexToPhysicalMatrix(self) -> vtkMatrix4x4
 |      C++: virtual vtkMatrix4x4 *GetIndexToPhysicalMatrix()
 |
 |      Get the transformation matrix from the index space to the
 |      physical space coordinate system of the dataset. The transform is
 |      a 4 by 4 matrix.
 |
 |  GetMaxCellSize(...)
 |      GetMaxCellSize(self) -> int
 |      C++: int GetMaxCellSize() override;
 |
 |      Convenience method returns largest cell size in dataset. This is
 |      generally used to allocate memory for supporting data structures.
 |      THIS METHOD IS THREAD SAFE
 |
 |  GetNumberOfCells(...)
 |      GetNumberOfCells(self) -> int
 |      C++: vtkIdType GetNumberOfCells() override;
 |
 |      Standard vtkDataSet API methods. See vtkDataSet for more
 |      information.
 |      \warning If GetCell(int,int,int) gets overridden in a subclass,
 |          it is
 |      necessary to override GetCell(vtkIdType) in that class as well
 |      since vtkImageData::GetCell(vtkIdType) will always call
 |      vkImageData::GetCell(int,int,int)
 |
 |  GetNumberOfGenerationsFromBase(...)
 |      GetNumberOfGenerationsFromBase(self, type:str) -> int
 |      C++: vtkIdType GetNumberOfGenerationsFromBase(const char *type)
 |          override;
 |
 |      Given the name of a base class of this class type, return the
 |      distance of inheritance between this class type and the named
 |      class (how many generations of inheritance are there between this
 |      class and the named class). If the named class is not in this
 |      class's inheritance tree, return a negative value. Valid
 |      responses will always be nonnegative. This method works in
 |      combination with vtkTypeMacro found in vtkSetGet.h.
 |
 |  GetNumberOfGenerationsFromBaseType(...)
 |      GetNumberOfGenerationsFromBaseType(type:str) -> int
 |      C++: static vtkIdType GetNumberOfGenerationsFromBaseType(
 |          const char *type)
 |
 |      Given a the name of a base class of this class type, return the
 |      distance of inheritance between this class type and the named
 |      class (how many generations of inheritance are there between this
 |      class and the named class). If the named class is not in this
 |      class's inheritance tree, return a negative value. Valid
 |      responses will always be nonnegative. This method works in
 |      combination with vtkTypeMacro found in vtkSetGet.h.
 |
 |  GetNumberOfPoints(...)
 |      GetNumberOfPoints(self) -> int
 |      C++: vtkIdType GetNumberOfPoints() override;
 |
 |      Determine the number of points composing the dataset. THIS METHOD
 |      IS THREAD SAFE
 |
 |  GetNumberOfScalarComponents(...)
 |      GetNumberOfScalarComponents(meta_data:vtkInformation) -> int
 |      C++: static int GetNumberOfScalarComponents(
 |          vtkInformation *meta_data)
 |      GetNumberOfScalarComponents(self) -> int
 |      C++: int GetNumberOfScalarComponents()
 |
 |  GetOrigin(...)
 |      GetOrigin(self) -> (float, float, float)
 |      C++: virtual double *GetOrigin()
 |
 |      Set/Get the origin of the dataset. The origin is the position in
 |      world coordinates of the point of extent (0,0,0). This point does
 |      not have to be part of the dataset, in other words, the dataset
 |      extent does not have to start at (0,0,0) and the origin can be
 |      outside of the dataset bounding box. The origin plus spacing
 |      determine the position in space of the points.
 |
 |  GetPhysicalToIndexMatrix(...)
 |      GetPhysicalToIndexMatrix(self) -> vtkMatrix4x4
 |      C++: virtual vtkMatrix4x4 *GetPhysicalToIndexMatrix()
 |
 |      Get the transformation matrix from the physical space to the
 |      index space coordinate system of the dataset. The transform is a
 |      4 by 4 matrix.
 |
 |  GetPoint(...)
 |      GetPoint(self, ptId:int) -> (float, float, float)
 |      C++: double *GetPoint(vtkIdType ptId) override;
 |      GetPoint(self, id:int, x:[float, float, float]) -> None
 |      C++: void GetPoint(vtkIdType id, double x[3]) override;
 |
 |      Get point coordinates with ptId such that: 0 <= ptId <
 |      NumberOfPoints. THIS METHOD IS NOT THREAD SAFE.
 |
 |  GetPointCells(...)
 |      GetPointCells(self, ptId:int, cellIds:vtkIdList) -> None
 |      C++: void GetPointCells(vtkIdType ptId, vtkIdList *cellIds)
 |          override;
 |
 |      Topological inquiry to get cells using point. THIS METHOD IS
 |      THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND THE DATASET
 |      IS NOT MODIFIED
 |
 |  GetPointGradient(...)
 |      GetPointGradient(self, i:int, j:int, k:int, s:vtkDataArray,
 |          g:[float, float, float]) -> None
 |      C++: virtual void GetPointGradient(int i, int j, int k,
 |          vtkDataArray *s, double g[3])
 |
 |      Given structured coordinates (i,j,k) for a point in a structured
 |      point dataset, compute the gradient vector from the scalar data
 |      at that point. The scalars s are the scalars from which the
 |      gradient is to be computed. This method will treat structured
 |      point datasets of any dimension.
 |
 |  GetScalarComponentAsDouble(...)
 |      GetScalarComponentAsDouble(self, x:int, y:int, z:int,
 |          component:int) -> float
 |      C++: virtual double GetScalarComponentAsDouble(int x, int y,
 |          int z, int component)
 |
 |  GetScalarComponentAsFloat(...)
 |      GetScalarComponentAsFloat(self, x:int, y:int, z:int,
 |          component:int) -> float
 |      C++: virtual float GetScalarComponentAsFloat(int x, int y, int z,
 |          int component)
 |
 |      For access to data from wrappers
 |
 |  GetScalarIndex(...)
 |      GetScalarIndex(self, coordinates:[int, int, int]) -> int
 |      C++: virtual vtkIdType GetScalarIndex(int coordinates[3])
 |      GetScalarIndex(self, x:int, y:int, z:int) -> int
 |      C++: virtual vtkIdType GetScalarIndex(int x, int y, int z)
 |
 |  GetScalarIndexForExtent(...)
 |      GetScalarIndexForExtent(self, extent:[int, int, int, int, int,
 |          int]) -> int
 |      C++: virtual vtkIdType GetScalarIndexForExtent(int extent[6])
 |
 |      Access the index for the scalar data
 |
 |  GetScalarPointer(...)
 |      GetScalarPointer(self, coordinates:[int, int, int]) -> Pointer
 |      C++: virtual void *GetScalarPointer(int coordinates[3])
 |      GetScalarPointer(self, x:int, y:int, z:int) -> Pointer
 |      C++: virtual void *GetScalarPointer(int x, int y, int z)
 |      GetScalarPointer(self) -> Pointer
 |      C++: virtual void *GetScalarPointer()
 |
 |  GetScalarPointerForExtent(...)
 |      GetScalarPointerForExtent(self, extent:[int, int, int, int, int,
 |          int]) -> Pointer
 |      C++: virtual void *GetScalarPointerForExtent(int extent[6])
 |
 |      Access the native pointer for the scalar data
 |
 |  GetScalarSize(...)
 |      GetScalarSize(self, meta_data:vtkInformation) -> int
 |      C++: virtual int GetScalarSize(vtkInformation *meta_data)
 |      GetScalarSize(self) -> int
 |      C++: virtual int GetScalarSize()
 |
 |      Get the size of the scalar type in bytes.
 |
 |  GetScalarType(...)
 |      GetScalarType(meta_data:vtkInformation) -> int
 |      C++: static int GetScalarType(vtkInformation *meta_data)
 |      GetScalarType(self) -> int
 |      C++: int GetScalarType()
 |
 |  GetScalarTypeAsString(...)
 |      GetScalarTypeAsString(self) -> str
 |      C++: const char *GetScalarTypeAsString()
 |
 |  GetScalarTypeMax(...)
 |      GetScalarTypeMax(self, meta_data:vtkInformation) -> float
 |      C++: virtual double GetScalarTypeMax(vtkInformation *meta_data)
 |      GetScalarTypeMax(self) -> float
 |      C++: virtual double GetScalarTypeMax()
 |
 |  GetScalarTypeMin(...)
 |      GetScalarTypeMin(self, meta_data:vtkInformation) -> float
 |      C++: virtual double GetScalarTypeMin(vtkInformation *meta_data)
 |      GetScalarTypeMin(self) -> float
 |      C++: virtual double GetScalarTypeMin()
 |
 |      These returns the minimum and maximum values the ScalarType can
 |      hold without overflowing.
 |
 |  GetSpacing(...)
 |      GetSpacing(self) -> (float, float, float)
 |      C++: virtual double *GetSpacing()
 |
 |      Set the spacing (width,height,length) of the cubical cells that
 |      compose the data set.
 |
 |  GetTupleIndex(...)
 |      GetTupleIndex(self, array:vtkDataArray, coordinates:[int, int,
 |          int]) -> int
 |      C++: vtkIdType GetTupleIndex(vtkDataArray *array,
 |          int coordinates[3])
 |
 |      Given a data array and a coordinate, return the index of the
 |      tuple in the array corresponding to that coordinate.
 |
 |      This method is analogous to GetArrayPointer(), but it conforms to
 |      the API of vtkGenericDataArray.
 |
 |  GetVoxelGradient(...)
 |      GetVoxelGradient(self, i:int, j:int, k:int, s:vtkDataArray,
 |          g:vtkDataArray) -> None
 |      C++: virtual void GetVoxelGradient(int i, int j, int k,
 |          vtkDataArray *s, vtkDataArray *g)
 |
 |      Given structured coordinates (i,j,k) for a voxel cell, compute
 |      the eight gradient values for the voxel corners. The order in
 |      which the gradient vectors are arranged corresponds to the
 |      ordering of the voxel points. Gradient vector is computed by
 |      central differences (except on edges of volume where forward
 |      difference is used). The scalars s are the scalars from which the
 |      gradient is to be computed. This method will treat only 3D
 |      structured point datasets (i.e., volumes).
 |
 |  HasAnyBlankCells(...)
 |      HasAnyBlankCells(self) -> bool
 |      C++: bool HasAnyBlankCells() override;
 |
 |      Returns 1 if there is any visibility constraint on the cells, 0
 |      otherwise.
 |
 |  HasAnyBlankPoints(...)
 |      HasAnyBlankPoints(self) -> bool
 |      C++: bool HasAnyBlankPoints() override;
 |
 |      Returns 1 if there is any visibility constraint on the points, 0
 |      otherwise.
 |
 |  HasNumberOfScalarComponents(...)
 |      HasNumberOfScalarComponents(meta_data:vtkInformation) -> bool
 |      C++: static bool HasNumberOfScalarComponents(
 |          vtkInformation *meta_data)
 |
 |  HasScalarType(...)
 |      HasScalarType(meta_data:vtkInformation) -> bool
 |      C++: static bool HasScalarType(vtkInformation *meta_data)
 |
 |  Initialize(...)
 |      Initialize(self) -> None
 |      C++: void Initialize() override;
 |
 |      Restore data object to initial state.
 |
 |  IsA(...)
 |      IsA(self, type:str) -> int
 |      C++: vtkTypeBool IsA(const char *type) override;
 |
 |      Return 1 if this class is the same type of (or a subclass of) the
 |      named class. Returns 0 otherwise. This method works in
 |      combination with vtkTypeMacro found in vtkSetGet.h.
 |
 |  IsCellVisible(...)
 |      IsCellVisible(self, cellId:int) -> int
 |      C++: unsigned char IsCellVisible(vtkIdType cellId)
 |
 |      Return non-zero value if specified point is visible. These
 |      methods should be called only after the dimensions of the grid
 |      are set.
 |
 |  IsPointVisible(...)
 |      IsPointVisible(self, ptId:int) -> int
 |      C++: unsigned char IsPointVisible(vtkIdType ptId)
 |
 |      Return non-zero value if specified point is visible. These
 |      methods should be called only after the dimensions of the grid
 |      are set.
 |
 |  IsTypeOf(...)
 |      IsTypeOf(type:str) -> int
 |      C++: static vtkTypeBool IsTypeOf(const char *type)
 |
 |      Return 1 if this class type is the same type of (or a subclass
 |      of) the named class. Returns 0 otherwise. This method works in
 |      combination with vtkTypeMacro found in vtkSetGet.h.
 |
 |  NewInstance(...)
 |      NewInstance(self) -> vtkImageData
 |      C++: vtkImageData *NewInstance()
 |
 |  PrepareForNewData(...)
 |      PrepareForNewData(self) -> None
 |      C++: void PrepareForNewData() override;
 |
 |      make the output data ready for new data to be inserted. For most
 |      objects we just call Initialize. But for image data we leave the
 |      old data in case the memory can be reused.
 |
 |  SafeDownCast(...)
 |      SafeDownCast(o:vtkObjectBase) -> vtkImageData
 |      C++: static vtkImageData *SafeDownCast(vtkObjectBase *o)
 |
 |  SetAxisUpdateExtent(...)
 |      SetAxisUpdateExtent(self, axis:int, min:int, max:int,
 |          updateExtent:(int, ...), axisUpdateExtent:[int, ...]) -> None
 |      C++: virtual void SetAxisUpdateExtent(int axis, int min, int max,
 |          const int *updateExtent, int *axisUpdateExtent)
 |
 |      Set / Get the extent on just one axis
 |
 |  SetDimensions(...)
 |      SetDimensions(self, i:int, j:int, k:int) -> None
 |      C++: virtual void SetDimensions(int i, int j, int k)
 |      SetDimensions(self, dims:(int, int, int)) -> None
 |      C++: virtual void SetDimensions(const int dims[3])
 |
 |      Same as SetExtent(0, i-1, 0, j-1, 0, k-1)
 |
 |  SetDirectionMatrix(...)
 |      SetDirectionMatrix(self, m:vtkMatrix3x3) -> None
 |      C++: virtual void SetDirectionMatrix(vtkMatrix3x3 *m)
 |      SetDirectionMatrix(self, elements:(float, float, float, float,
 |          float, float, float, float, float)) -> None
 |      C++: virtual void SetDirectionMatrix(const double elements[9])
 |      SetDirectionMatrix(self, e00:float, e01:float, e02:float,
 |          e10:float, e11:float, e12:float, e20:float, e21:float,
 |          e22:float) -> None
 |      C++: virtual void SetDirectionMatrix(double e00, double e01,
 |          double e02, double e10, double e11, double e12, double e20,
 |          double e21, double e22)
 |
 |  SetExtent(...)
 |      SetExtent(self, extent:[int, int, int, int, int, int]) -> None
 |      C++: virtual void SetExtent(int extent[6])
 |      SetExtent(self, x1:int, x2:int, y1:int, y2:int, z1:int, z2:int)
 |          -> None
 |      C++: virtual void SetExtent(int x1, int x2, int y1, int y2,
 |          int z1, int z2)
 |
 |      Set/Get the extent. On each axis, the extent is defined by the
 |      index of the first point and the index of the last point.  The
 |      extent should be set before the "Scalars" are set or allocated.
 |      The Extent is stored in the order (X, Y, Z). The dataset extent
 |      does not have to start at (0,0,0). (0,0,0) is just the extent of
 |      the origin. The first point (the one with Id=0) is at extent
 |      (Extent[0],Extent[2],Extent[4]). As for any dataset, a data array
 |      on point data starts at Id=0.
 |
 |  SetNumberOfScalarComponents(...)
 |      SetNumberOfScalarComponents(n:int, meta_data:vtkInformation)
 |          -> None
 |      C++: static void SetNumberOfScalarComponents(int n,
 |          vtkInformation *meta_data)
 |
 |      Set/Get the number of scalar components for points. As with the
 |      SetScalarType method this is setting pipeline info.
 |
 |  SetOrigin(...)
 |      SetOrigin(self, i:float, j:float, k:float) -> None
 |      C++: virtual void SetOrigin(double i, double j, double k)
 |      SetOrigin(self, ijk:(float, float, float)) -> None
 |      C++: virtual void SetOrigin(const double ijk[3])
 |
 |  SetScalarComponentFromDouble(...)
 |      SetScalarComponentFromDouble(self, x:int, y:int, z:int,
 |          component:int, v:float) -> None
 |      C++: virtual void SetScalarComponentFromDouble(int x, int y,
 |          int z, int component, double v)
 |
 |  SetScalarComponentFromFloat(...)
 |      SetScalarComponentFromFloat(self, x:int, y:int, z:int,
 |          component:int, v:float) -> None
 |      C++: virtual void SetScalarComponentFromFloat(int x, int y, int z,
 |           int component, float v)
 |
 |  SetScalarType(...)
 |      SetScalarType(__a:int, meta_data:vtkInformation) -> None
 |      C++: static void SetScalarType(int, vtkInformation *meta_data)
 |
 |  SetSpacing(...)
 |      SetSpacing(self, i:float, j:float, k:float) -> None
 |      C++: virtual void SetSpacing(double i, double j, double k)
 |      SetSpacing(self, ijk:(float, float, float)) -> None
 |      C++: virtual void SetSpacing(const double ijk[3])
 |
 |  ShallowCopy(...)
 |      ShallowCopy(self, src:vtkDataObject) -> None
 |      C++: void ShallowCopy(vtkDataObject *src) override;
 |
 |      Shallow and Deep copy.
 |
 |  TransformContinuousIndexToPhysicalPoint(...)
 |      TransformContinuousIndexToPhysicalPoint(self, i:float, j:float,
 |          k:float, xyz:[float, float, float]) -> None
 |      C++: virtual void TransformContinuousIndexToPhysicalPoint(
 |          double i, double j, double k, double xyz[3])
 |      TransformContinuousIndexToPhysicalPoint(self, ijk:(float, float,
 |          float), xyz:[float, float, float]) -> None
 |      C++: virtual void TransformContinuousIndexToPhysicalPoint(
 |          const double ijk[3], double xyz[3])
 |      TransformContinuousIndexToPhysicalPoint(i:float, j:float, k:float,
 |           origin:(float, float, float), spacing:(float, float, float),
 |          direction:(float, float, float, float, float, float, float,
 |          float, float), xyz:[float, float, float]) -> None
 |      C++: static void TransformContinuousIndexToPhysicalPoint(double i,
 |           double j, double k, double const origin[3],
 |          double const spacing[3], double const direction[9],
 |          double xyz[3])
 |
 |      Convert coordinates from index space (ijk) to physical space
 |      (xyz).
 |
 |  TransformIndexToPhysicalPoint(...)
 |      TransformIndexToPhysicalPoint(self, i:int, j:int, k:int,
 |          xyz:[float, float, float]) -> None
 |      C++: virtual void TransformIndexToPhysicalPoint(int i, int j,
 |          int k, double xyz[3])
 |      TransformIndexToPhysicalPoint(self, ijk:(int, int, int),
 |          xyz:[float, float, float]) -> None
 |      C++: virtual void TransformIndexToPhysicalPoint(const int ijk[3],
 |          double xyz[3])
 |
 |  TransformPhysicalNormalToContinuousIndex(...)
 |      TransformPhysicalNormalToContinuousIndex(self, xyz:(float, float,
 |          float), ijk:[float, float, float]) -> None
 |      C++: virtual void TransformPhysicalNormalToContinuousIndex(
 |          const double xyz[3], double ijk[3])
 |
 |      Convert normal from physical space (xyz) to index space (ijk).
 |
 |  TransformPhysicalPlaneToContinuousIndex(...)
 |      TransformPhysicalPlaneToContinuousIndex(self, pplane:(float,
 |          float, float, float), iplane:[float, float, float, float])
 |          -> None
 |      C++: virtual void TransformPhysicalPlaneToContinuousIndex(
 |          double const pplane[4], double iplane[4])
 |
 |      Convert a plane from physical to a continuous index. The plane is
 |      represented as n(x-xo)=0; or using a four component normal:
 |      pplane=( nx,ny,nz,-(n(x0)) ).
 |
 |  TransformPhysicalPointToContinuousIndex(...)
 |      TransformPhysicalPointToContinuousIndex(self, x:float, y:float,
 |          z:float, ijk:[float, float, float]) -> None
 |      C++: virtual void TransformPhysicalPointToContinuousIndex(
 |          double x, double y, double z, double ijk[3])
 |      TransformPhysicalPointToContinuousIndex(self, xyz:(float, float,
 |          float), ijk:[float, float, float]) -> None
 |      C++: virtual void TransformPhysicalPointToContinuousIndex(
 |          const double xyz[3], double ijk[3])
 |
 |      Convert coordinates from physical space (xyz) to index space
 |      (ijk).
 |
 |  __delattr__(self, name, /)
 |      Implement delattr(self, name).
 |
 |  __getattribute__(self, name, /)
 |      Return getattr(self, name).
 |
 |  __setattr__(self, name, value, /)
 |      Implement setattr(self, name, value).
 |
 |  ----------------------------------------------------------------------
 |  Static methods inherited from vtkmodules.vtkCommonDataModel.vtkImageData:
 |
 |  __new__(*args, **kwargs) from builtins.type
 |      Create and return a new object.  See help(type) for accurate signature.
 |
 |  ----------------------------------------------------------------------
 |  Data descriptors inherited from vtkmodules.vtkCommonDataModel.vtkImageData:
 |
 |  __dict__
 |      Dictionary of attributes set by user.
 |
 |  __this__
 |      Pointer to the C++ object.
 |
 |  ----------------------------------------------------------------------
 |  Data and other attributes inherited from vtkmodules.vtkCommonDataModel.vtkImageData:
 |
 |  __vtkname__ = 'vtkImageData'
 |
 |  ----------------------------------------------------------------------
 |  Methods inherited from vtkmodules.vtkCommonDataModel.vtkDataSet:
 |
 |  AllocateCellGhostArray(...)
 |      AllocateCellGhostArray(self) -> vtkUnsignedCharArray
 |      C++: vtkUnsignedCharArray *AllocateCellGhostArray()
 |
 |      Allocate ghost array for cells.
 |
 |  AllocatePointGhostArray(...)
 |      AllocatePointGhostArray(self) -> vtkUnsignedCharArray
 |      C++: vtkUnsignedCharArray *AllocatePointGhostArray()
 |
 |      Allocate ghost array for points.
 |
 |  CheckAttributes(...)
 |      CheckAttributes(self) -> int
 |      C++: int CheckAttributes()
 |
 |      This method checks to see if the cell and point attributes match
 |      the geometry.  Many filters will crash if the number of tuples in
 |      an array is less than the number of points/cells. This method
 |      returns 1 if there is a mismatch, and 0 if everything is ok.  It
 |      prints an error if an array is too short, and a warning if an
 |      array is too long.
 |
 |  CopyAttributes(...)
 |      CopyAttributes(self, ds:vtkDataSet) -> None
 |      C++: virtual void CopyAttributes(vtkDataSet *ds)
 |
 |      Copy the attributes associated with the specified dataset to this
 |      instance of vtkDataSet. THIS METHOD IS NOT THREAD SAFE.
 |
 |  GenerateGhostArray(...)
 |      GenerateGhostArray(self, zeroExt:[int, int, int, int, int, int])
 |          -> None
 |      C++: virtual void GenerateGhostArray(int zeroExt[6])
 |      GenerateGhostArray(self, zeroExt:[int, int, int, int, int, int],
 |          cellOnly:bool) -> None
 |      C++: virtual void GenerateGhostArray(int zeroExt[6],
 |          bool cellOnly)
 |
 |      Normally called by pipeline executives or algorithms only. This
 |      method computes the ghost arrays for a given dataset. The zeroExt
 |      argument specifies the extent of the region which ghost type = 0.
 |
 |  GetAttributesAsFieldData(...)
 |      GetAttributesAsFieldData(self, type:int) -> vtkFieldData
 |      C++: vtkFieldData *GetAttributesAsFieldData(int type) override;
 |
 |      Returns the attributes of the data object as a vtkFieldData. This
 |      returns non-null values in all the same cases as GetAttributes,
 |      in addition to the case of FIELD, which will return the field
 |      data for any vtkDataObject subclass.
 |
 |  GetBounds(...)
 |      GetBounds(self) -> (float, float, float, float, float, float)
 |      C++: double *GetBounds()
 |      GetBounds(self, bounds:[float, float, float, float, float, float])
 |           -> None
 |      C++: void GetBounds(double bounds[6])
 |
 |      Return a pointer to the geometry bounding box in the form
 |      (xmin,xmax, ymin,ymax, zmin,zmax). THIS METHOD IS NOT THREAD
 |      SAFE.
 |
 |  GetCellData(...)
 |      GetCellData(self) -> vtkCellData
 |      C++: vtkCellData *GetCellData()
 |
 |      Return a pointer to this dataset's cell data. THIS METHOD IS
 |      THREAD SAFE
 |
 |  GetCellGhostArray(...)
 |      GetCellGhostArray(self) -> vtkUnsignedCharArray
 |      C++: vtkUnsignedCharArray *GetCellGhostArray()
 |
 |      Get the array that defines the ghost type of each cell. We cache
 |      the pointer to the array to save a lookup involving string
 |      comparisons
 |
 |  GetCellTypes(...)
 |      GetCellTypes(self, types:vtkCellTypes) -> None
 |      C++: virtual void GetCellTypes(vtkCellTypes *types)
 |
 |      Get a list of types of cells in a dataset. The list consists of
 |      an array of types (not necessarily in any order), with a single
 |      entry per type. For example a dataset 5 triangles, 3 lines, and
 |      100 hexahedra would result a list of three entries, corresponding
 |      to the types VTK_TRIANGLE, VTK_LINE, and VTK_HEXAHEDRON. THIS
 |      METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND
 |      THE DATASET IS NOT MODIFIED
 |
 |  GetCenter(...)
 |      GetCenter(self) -> (float, float, float)
 |      C++: double *GetCenter()
 |      GetCenter(self, center:[float, float, float]) -> None
 |      C++: void GetCenter(double center[3])
 |
 |      Get the center of the bounding box. THIS METHOD IS NOT THREAD
 |      SAFE.
 |
 |  GetLength(...)
 |      GetLength(self) -> float
 |      C++: double GetLength()
 |
 |      Return the length of the diagonal of the bounding box. THIS
 |      METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND
 |      THE DATASET IS NOT MODIFIED
 |
 |  GetMTime(...)
 |      GetMTime(self) -> int
 |      C++: vtkMTimeType GetMTime() override;
 |
 |      Datasets are composite objects and need to check each part for
 |      MTime THIS METHOD IS THREAD SAFE
 |
 |  GetNumberOfElements(...)
 |      GetNumberOfElements(self, type:int) -> int
 |      C++: vtkIdType GetNumberOfElements(int type) override;
 |
 |      Get the number of elements for a specific attribute type (POINT,
 |      CELL, etc.).
 |
 |  GetPointData(...)
 |      GetPointData(self) -> vtkPointData
 |      C++: vtkPointData *GetPointData()
 |
 |      Return a pointer to this dataset's point data. THIS METHOD IS
 |      THREAD SAFE
 |
 |  GetPointGhostArray(...)
 |      GetPointGhostArray(self) -> vtkUnsignedCharArray
 |      C++: vtkUnsignedCharArray *GetPointGhostArray()
 |
 |      Gets the array that defines the ghost type of each point. We
 |      cache the pointer to the array to save a lookup involving string
 |      comparisons
 |
 |  GetScalarRange(...)
 |      GetScalarRange(self, range:[float, float]) -> None
 |      C++: virtual void GetScalarRange(double range[2])
 |      GetScalarRange(self) -> (float, float)
 |      C++: double *GetScalarRange()
 |
 |      Convenience method to get the range of the first component (and
 |      only the first component) of any scalars in the data set.  If the
 |      data has both point data and cell data, it returns the (min/max)
 |      range of combined point and cell data.  If there are no point or
 |      cell scalars the method will return (0,1).  Note: It might be
 |      necessary to call Update to create or refresh the scalars before
 |      calling this method. THIS METHOD IS THREAD SAFE IF FIRST CALLED
 |      FROM A SINGLE THREAD AND THE DATASET IS NOT MODIFIED
 |
 |  HasAnyGhostCells(...)
 |      HasAnyGhostCells(self) -> bool
 |      C++: bool HasAnyGhostCells()
 |
 |      Returns 1 if there are any ghost cells 0 otherwise.
 |
 |  HasAnyGhostPoints(...)
 |      HasAnyGhostPoints(self) -> bool
 |      C++: bool HasAnyGhostPoints()
 |
 |      Returns 1 if there are any ghost points 0 otherwise.
 |
 |  NewCellIterator(...)
 |      NewCellIterator(self) -> vtkCellIterator
 |      C++: virtual vtkCellIterator *NewCellIterator()
 |
 |      Return an iterator that traverses the cells in this data set.
 |
 |  SetCellOrderAndRationalWeights(...)
 |      SetCellOrderAndRationalWeights(self, cellId:int,
 |          cell:vtkGenericCell) -> None
 |      C++: void SetCellOrderAndRationalWeights(vtkIdType cellId,
 |          vtkGenericCell *cell)
 |
 |  Squeeze(...)
 |      Squeeze(self) -> None
 |      C++: virtual void Squeeze()
 |
 |      Reclaim any extra memory used to store data. THIS METHOD IS NOT
 |      THREAD SAFE.
 |
 |  UpdateCellGhostArrayCache(...)
 |      UpdateCellGhostArrayCache(self) -> None
 |      C++: void UpdateCellGhostArrayCache()
 |
 |      Updates the pointer to the cell ghost array.
 |
 |  UpdatePointGhostArrayCache(...)
 |      UpdatePointGhostArrayCache(self) -> None
 |      C++: void UpdatePointGhostArrayCache()
 |
 |      Updates the pointer to the point ghost array.
 |
 |  ----------------------------------------------------------------------
 |  Data and other attributes inherited from vtkmodules.vtkCommonDataModel.vtkDataSet:
 |
 |  CELL_DATA_FIELD = 2
 |
 |  DATA_OBJECT_FIELD = 0
 |
 |  FieldDataType = <class 'vtkmodules.vtkCommonDataModel.vtkDataSet.Field...
 |
 |  POINT_DATA_FIELD = 1
 |
 |  ----------------------------------------------------------------------
 |  Methods inherited from vtkmodules.vtkCommonDataModel.vtkDataObject:
 |
 |  ALL_PIECES_EXTENT(...)
 |      ALL_PIECES_EXTENT() -> vtkInformationIntegerVectorKey
 |      C++: static vtkInformationIntegerVectorKey *ALL_PIECES_EXTENT()
 |
 |  BOUNDING_BOX(...)
 |      BOUNDING_BOX() -> vtkInformationDoubleVectorKey
 |      C++: static vtkInformationDoubleVectorKey *BOUNDING_BOX()
 |
 |  CELL_DATA_VECTOR(...)
 |      CELL_DATA_VECTOR() -> vtkInformationInformationVectorKey
 |      C++: static vtkInformationInformationVectorKey *CELL_DATA_VECTOR()
 |
 |  DATA_EXTENT(...)
 |      DATA_EXTENT() -> vtkInformationIntegerPointerKey
 |      C++: static vtkInformationIntegerPointerKey *DATA_EXTENT()
 |
 |  DATA_EXTENT_TYPE(...)
 |      DATA_EXTENT_TYPE() -> vtkInformationIntegerKey
 |      C++: static vtkInformationIntegerKey *DATA_EXTENT_TYPE()
 |
 |  DATA_NUMBER_OF_GHOST_LEVELS(...)
 |      DATA_NUMBER_OF_GHOST_LEVELS() -> vtkInformationIntegerKey
 |      C++: static vtkInformationIntegerKey *DATA_NUMBER_OF_GHOST_LEVELS(
 |          )
 |
 |  DATA_NUMBER_OF_PIECES(...)
 |      DATA_NUMBER_OF_PIECES() -> vtkInformationIntegerKey
 |      C++: static vtkInformationIntegerKey *DATA_NUMBER_OF_PIECES()
 |
 |  DATA_OBJECT(...)
 |      DATA_OBJECT() -> vtkInformationDataObjectKey
 |      C++: static vtkInformationDataObjectKey *DATA_OBJECT()
 |
 |  DATA_PIECE_NUMBER(...)
 |      DATA_PIECE_NUMBER() -> vtkInformationIntegerKey
 |      C++: static vtkInformationIntegerKey *DATA_PIECE_NUMBER()
 |
 |  DATA_TIME_STEP(...)
 |      DATA_TIME_STEP() -> vtkInformationDoubleKey
 |      C++: static vtkInformationDoubleKey *DATA_TIME_STEP()
 |
 |  DATA_TYPE_NAME(...)
 |      DATA_TYPE_NAME() -> vtkInformationStringKey
 |      C++: static vtkInformationStringKey *DATA_TYPE_NAME()
 |
 |  DIRECTION(...)
 |      DIRECTION() -> vtkInformationDoubleVectorKey
 |      C++: static vtkInformationDoubleVectorKey *DIRECTION()
 |
 |  DataHasBeenGenerated(...)
 |      DataHasBeenGenerated(self) -> None
 |      C++: void DataHasBeenGenerated()
 |
 |      This method is called by the source when it executes to generate
 |      data. It is sort of the opposite of ReleaseData. It sets the
 |      DataReleased flag to 0, and sets a new UpdateTime.
 |
 |  EDGE_DATA_VECTOR(...)
 |      EDGE_DATA_VECTOR() -> vtkInformationInformationVectorKey
 |      C++: static vtkInformationInformationVectorKey *EDGE_DATA_VECTOR()
 |
 |  FIELD_ACTIVE_ATTRIBUTE(...)
 |      FIELD_ACTIVE_ATTRIBUTE() -> vtkInformationIntegerKey
 |      C++: static vtkInformationIntegerKey *FIELD_ACTIVE_ATTRIBUTE()
 |
 |  FIELD_ARRAY_TYPE(...)
 |      FIELD_ARRAY_TYPE() -> vtkInformationIntegerKey
 |      C++: static vtkInformationIntegerKey *FIELD_ARRAY_TYPE()
 |
 |  FIELD_ASSOCIATION(...)
 |      FIELD_ASSOCIATION() -> vtkInformationIntegerKey
 |      C++: static vtkInformationIntegerKey *FIELD_ASSOCIATION()
 |
 |  FIELD_ATTRIBUTE_TYPE(...)
 |      FIELD_ATTRIBUTE_TYPE() -> vtkInformationIntegerKey
 |      C++: static vtkInformationIntegerKey *FIELD_ATTRIBUTE_TYPE()
 |
 |  FIELD_NAME(...)
 |      FIELD_NAME() -> vtkInformationStringKey
 |      C++: static vtkInformationStringKey *FIELD_NAME()
 |
 |  FIELD_NUMBER_OF_COMPONENTS(...)
 |      FIELD_NUMBER_OF_COMPONENTS() -> vtkInformationIntegerKey
 |      C++: static vtkInformationIntegerKey *FIELD_NUMBER_OF_COMPONENTS()
 |
 |  FIELD_NUMBER_OF_TUPLES(...)
 |      FIELD_NUMBER_OF_TUPLES() -> vtkInformationIntegerKey
 |      C++: static vtkInformationIntegerKey *FIELD_NUMBER_OF_TUPLES()
 |
 |  FIELD_OPERATION(...)
 |      FIELD_OPERATION() -> vtkInformationIntegerKey
 |      C++: static vtkInformationIntegerKey *FIELD_OPERATION()
 |
 |  FIELD_RANGE(...)
 |      FIELD_RANGE() -> vtkInformationDoubleVectorKey
 |      C++: static vtkInformationDoubleVectorKey *FIELD_RANGE()
 |
 |  GetActiveFieldInformation(...)
 |      GetActiveFieldInformation(info:vtkInformation,
 |          fieldAssociation:int, attributeType:int) -> vtkInformation
 |      C++: static vtkInformation *GetActiveFieldInformation(
 |          vtkInformation *info, int fieldAssociation, int attributeType)
 |
 |      Return the information object within the input information
 |      object's field data corresponding to the specified association
 |      (FIELD_ASSOCIATION_POINTS or FIELD_ASSOCIATION_CELLS) and
 |      attribute (SCALARS, VECTORS, NORMALS, TCOORDS, or TENSORS)
 |
 |  GetAssociationTypeAsString(...)
 |      GetAssociationTypeAsString(associationType:int) -> str
 |      C++: static const char *GetAssociationTypeAsString(
 |          int associationType)
 |
 |      Given an integer association type, this static method returns a
 |      string type for the attribute (i.e. associationType = 0: returns
 |      "Points").
 |
 |  GetAssociationTypeFromString(...)
 |      GetAssociationTypeFromString(associationName:str) -> int
 |      C++: static int GetAssociationTypeFromString(
 |          const char *associationName)
 |
 |      Given a string association name, this static method returns an
 |      integer association type for the attribute (i.e. associationName
 |      = "Points": returns 0).
 |
 |  GetAttributeTypeForArray(...)
 |      GetAttributeTypeForArray(self, arr:vtkAbstractArray) -> int
 |      C++: virtual int GetAttributeTypeForArray(vtkAbstractArray *arr)
 |
 |      Retrieves the attribute type that an array came from. This is
 |      useful for obtaining which attribute type a input array to an
 |      algorithm came from (retrieved from
 |      GetInputAbstractArrayToProcesss).
 |
 |  GetAttributes(...)
 |      GetAttributes(self, type:int) -> vtkDataSetAttributes
 |      C++: virtual vtkDataSetAttributes *GetAttributes(int type)
 |
 |      Returns the attributes of the data object of the specified
 |      attribute type. The type may be:  POINT  - Defined in vtkDataSet
 |      subclasses. CELL   - Defined in vtkDataSet subclasses. VERTEX -
 |      Defined in vtkGraph subclasses. EDGE   - Defined in vtkGraph
 |      subclasses. ROW    - Defined in vtkTable.  The other attribute
 |      type, FIELD, will return nullptr since field data is stored as a
 |      vtkFieldData instance, not a vtkDataSetAttributes instance. To
 |      retrieve field data, use GetAttributesAsFieldData.
 |
 |      @warning This method NEEDS to be
 |      overriden in subclasses to work as documented. If not, it returns
 |      nullptr for any type but FIELD.
 |
 |  GetDataReleased(...)
 |      GetDataReleased(self) -> int
 |      C++: virtual int GetDataReleased()
 |
 |      Get the flag indicating the data has been released.
 |
 |  GetFieldData(...)
 |      GetFieldData(self) -> vtkFieldData
 |      C++: virtual vtkFieldData *GetFieldData()
 |
 |  GetGhostArray(...)
 |      GetGhostArray(self, type:int) -> vtkDataArray
 |      C++: virtual vtkDataArray *GetGhostArray(int type)
 |
 |      Returns the ghost arrays of the data object of the specified
 |      atribute type. The type may be:  POINT    - Defined in vtkDataSet
 |      subclasses CELL   - Defined in vtkDataSet subclasses.  The other
 |      attribute types, will return nullptr since ghosts arrays are not
 |      defined for now outside of point or cell.
 |
 |  GetGlobalReleaseDataFlag(...)
 |      GetGlobalReleaseDataFlag() -> int
 |      C++: static int GetGlobalReleaseDataFlag()
 |
 |  GetInformation(...)
 |      GetInformation(self) -> vtkInformation
 |      C++: virtual vtkInformation *GetInformation()
 |
 |      Set/Get the information object associated with this data object.
 |
 |  GetNamedFieldInformation(...)
 |      GetNamedFieldInformation(info:vtkInformation,
 |          fieldAssociation:int, name:str) -> vtkInformation
 |      C++: static vtkInformation *GetNamedFieldInformation(
 |          vtkInformation *info, int fieldAssociation, const char *name)
 |
 |      Return the information object within the input information
 |      object's field data corresponding to the specified association
 |      (FIELD_ASSOCIATION_POINTS or FIELD_ASSOCIATION_CELLS) and name.
 |
 |  GetUpdateTime(...)
 |      GetUpdateTime(self) -> int
 |      C++: vtkMTimeType GetUpdateTime()
 |
 |      Used by Threaded ports to determine if they should initiate an
 |      asynchronous update (still in development).
 |
 |  GlobalReleaseDataFlagOff(...)
 |      GlobalReleaseDataFlagOff(self) -> None
 |      C++: void GlobalReleaseDataFlagOff()
 |
 |  GlobalReleaseDataFlagOn(...)
 |      GlobalReleaseDataFlagOn(self) -> None
 |      C++: void GlobalReleaseDataFlagOn()
 |
 |  ORIGIN(...)
 |      ORIGIN() -> vtkInformationDoubleVectorKey
 |      C++: static vtkInformationDoubleVectorKey *ORIGIN()
 |
 |  PIECE_EXTENT(...)
 |      PIECE_EXTENT() -> vtkInformationIntegerVectorKey
 |      C++: static vtkInformationIntegerVectorKey *PIECE_EXTENT()
 |
 |  POINT_DATA_VECTOR(...)
 |      POINT_DATA_VECTOR() -> vtkInformationInformationVectorKey
 |      C++: static vtkInformationInformationVectorKey *POINT_DATA_VECTOR(
 |          )
 |
 |  ReleaseData(...)
 |      ReleaseData(self) -> None
 |      C++: void ReleaseData()
 |
 |      Release data back to system to conserve memory resource. Used
 |      during visualization network execution.  Releasing this data does
 |      not make down-stream data invalid.
 |
 |  RemoveNamedFieldInformation(...)
 |      RemoveNamedFieldInformation(info:vtkInformation,
 |          fieldAssociation:int, name:str) -> None
 |      C++: static void RemoveNamedFieldInformation(vtkInformation *info,
 |           int fieldAssociation, const char *name)
 |
 |      Remove the info associated with an array
 |
 |  SIL(...)
 |      SIL() -> vtkInformationDataObjectKey
 |      C++: static vtkInformationDataObjectKey *SIL()
 |
 |  SPACING(...)
 |      SPACING() -> vtkInformationDoubleVectorKey
 |      C++: static vtkInformationDoubleVectorKey *SPACING()
 |
 |  SetActiveAttribute(...)
 |      SetActiveAttribute(info:vtkInformation, fieldAssociation:int,
 |          attributeName:str, attributeType:int) -> vtkInformation
 |      C++: static vtkInformation *SetActiveAttribute(
 |          vtkInformation *info, int fieldAssociation,
 |          const char *attributeName, int attributeType)
 |
 |      Set the named array to be the active field for the specified type
 |      (SCALARS, VECTORS, NORMALS, TCOORDS, or TENSORS) and association
 |      (FIELD_ASSOCIATION_POINTS or FIELD_ASSOCIATION_CELLS).  Returns
 |      the active field information object and creates on entry if one
 |      not found.
 |
 |  SetActiveAttributeInfo(...)
 |      SetActiveAttributeInfo(info:vtkInformation, fieldAssociation:int,
 |          attributeType:int, name:str, arrayType:int, numComponents:int,
 |           numTuples:int) -> None
 |      C++: static void SetActiveAttributeInfo(vtkInformation *info,
 |          int fieldAssociation, int attributeType, const char *name,
 |          int arrayType, int numComponents, int numTuples)
 |
 |      Set the name, array type, number of components, and number of
 |      tuples within the passed information object for the active
 |      attribute of type attributeType (in specified association,
 |      FIELD_ASSOCIATION_POINTS or FIELD_ASSOCIATION_CELLS).  If there
 |      is not an active attribute of the specified type, an entry in the
 |      information object is created.  If arrayType, numComponents, or
 |      numTuples equal to -1, or name=nullptr the value is not changed.
 |
 |  SetFieldData(...)
 |      SetFieldData(self, __a:vtkFieldData) -> None
 |      C++: virtual void SetFieldData(vtkFieldData *)
 |
 |      Assign or retrieve a general field data to this data object.
 |
 |  SetGlobalReleaseDataFlag(...)
 |      SetGlobalReleaseDataFlag(val:int) -> None
 |      C++: static void SetGlobalReleaseDataFlag(int val)
 |
 |      Turn on/off flag to control whether every object releases its
 |      data after being used by a filter.
 |
 |  SetInformation(...)
 |      SetInformation(self, __a:vtkInformation) -> None
 |      C++: virtual void SetInformation(vtkInformation *)
 |
 |  SetPointDataActiveScalarInfo(...)
 |      SetPointDataActiveScalarInfo(info:vtkInformation, arrayType:int,
 |          numComponents:int) -> None
 |      C++: static void SetPointDataActiveScalarInfo(
 |          vtkInformation *info, int arrayType, int numComponents)
 |
 |      Convenience version of previous method for use (primarily) by the
 |      Imaging filters. If arrayType or numComponents == -1, the value
 |      is not changed.
 |
 |  VERTEX_DATA_VECTOR(...)
 |      VERTEX_DATA_VECTOR() -> vtkInformationInformationVectorKey
 |      C++: static vtkInformationInformationVectorKey *VERTEX_DATA_VECTOR(
 |          )
 |
 |  ----------------------------------------------------------------------
 |  Data and other attributes inherited from vtkmodules.vtkCommonDataModel.vtkDataObject:
 |
 |  AttributeTypes = <class 'vtkmodules.vtkCommonDataModel.vtkDataObject.A...
 |
 |  CELL = 1
 |
 |  EDGE = 5
 |
 |  FIELD = 2
 |
 |  FIELD_ASSOCIATION_CELLS = 1
 |
 |  FIELD_ASSOCIATION_EDGES = 5
 |
 |  FIELD_ASSOCIATION_NONE = 2
 |
 |  FIELD_ASSOCIATION_POINTS = 0
 |
 |  FIELD_ASSOCIATION_POINTS_THEN_CELLS = 3
 |
 |  FIELD_ASSOCIATION_ROWS = 6
 |
 |  FIELD_ASSOCIATION_VERTICES = 4
 |
 |  FIELD_OPERATION_MODIFIED = 2
 |
 |  FIELD_OPERATION_PRESERVED = 0
 |
 |  FIELD_OPERATION_REINTERPOLATED = 1
 |
 |  FIELD_OPERATION_REMOVED = 3
 |
 |  FieldAssociations = <class 'vtkmodules.vtkCommonDataModel.vtkDataObjec...
 |
 |  FieldOperations = <class 'vtkmodules.vtkCommonDataModel.vtkDataObject....
 |
 |  NUMBER_OF_ASSOCIATIONS = 7
 |
 |  NUMBER_OF_ATTRIBUTE_TYPES = 7
 |
 |  POINT = 0
 |
 |  POINT_THEN_CELL = 3
 |
 |  ROW = 6
 |
 |  VERTEX = 4
 |
 |  ----------------------------------------------------------------------
 |  Methods inherited from vtkmodules.vtkCommonCore.vtkObject:
 |
 |  AddObserver(...)
 |      AddObserver(self, event:int, command:Callback, priority:float=0.0) -> int
 |      C++: unsigned long AddObserver(const char* event,
 |          vtkCommand* command, float priority=0.0f)
 |
 |      Add an event callback command(o:vtkObject, event:int) for an event type.
 |      Returns a handle that can be used with RemoveEvent(event:int).
 |
 |  BreakOnError(...)
 |      BreakOnError() -> None
 |      C++: static void BreakOnError()
 |
 |      This method is called when vtkErrorMacro executes. It allows the
 |      debugger to break on error.
 |
 |  DebugOff(...)
 |      DebugOff(self) -> None
 |      C++: virtual void DebugOff()
 |
 |      Turn debugging output off.
 |
 |  DebugOn(...)
 |      DebugOn(self) -> None
 |      C++: virtual void DebugOn()
 |
 |      Turn debugging output on.
 |
 |  GetCommand(...)
 |      GetCommand(self, tag:int) -> vtkCommand
 |      C++: vtkCommand *GetCommand(unsigned long tag)
 |
 |  GetDebug(...)
 |      GetDebug(self) -> bool
 |      C++: bool GetDebug()
 |
 |      Get the value of the debug flag.
 |
 |  GetGlobalWarningDisplay(...)
 |      GetGlobalWarningDisplay() -> int
 |      C++: static int GetGlobalWarningDisplay()
 |
 |  GlobalWarningDisplayOff(...)
 |      GlobalWarningDisplayOff() -> None
 |      C++: static void GlobalWarningDisplayOff()
 |
 |  GlobalWarningDisplayOn(...)
 |      GlobalWarningDisplayOn() -> None
 |      C++: static void GlobalWarningDisplayOn()
 |
 |  HasObserver(...)
 |      HasObserver(self, event:int, __b:vtkCommand) -> int
 |      C++: vtkTypeBool HasObserver(unsigned long event, vtkCommand *)
 |      HasObserver(self, event:str, __b:vtkCommand) -> int
 |      C++: vtkTypeBool HasObserver(const char *event, vtkCommand *)
 |      HasObserver(self, event:int) -> int
 |      C++: vtkTypeBool HasObserver(unsigned long event)
 |      HasObserver(self, event:str) -> int
 |      C++: vtkTypeBool HasObserver(const char *event)
 |
 |  InvokeEvent(...)
 |      InvokeEvent(self, event:int, callData:Any) -> int
 |      C++: int InvokeEvent(unsigned long event, void* callData)
 |      InvokeEvent(self, event:str, callData:Any) -> int
 |      C++: int InvokeEvent(const char* event, void* callData)
 |      InvokeEvent(self, event:int) -> int
 |      C++: int InvokeEvent(unsigned long event)
 |      InvokeEvent(self, event:str) -> int
 |      C++: int InvokeEvent(const char* event)
 |
 |      This method invokes an event and returns whether the event was
 |      aborted or not. If the event was aborted, the return value is 1,
 |      otherwise it is 0.
 |
 |  Modified(...)
 |      Modified(self) -> None
 |      C++: virtual void Modified()
 |
 |      Update the modification time for this object. Many filters rely
 |      on the modification time to determine if they need to recompute
 |      their data. The modification time is a unique monotonically
 |      increasing unsigned long integer.
 |
 |  RemoveAllObservers(...)
 |      RemoveAllObservers(self) -> None
 |      C++: void RemoveAllObservers()
 |
 |  RemoveObserver(...)
 |      RemoveObserver(self, __a:vtkCommand) -> None
 |      C++: void RemoveObserver(vtkCommand *)
 |      RemoveObserver(self, tag:int) -> None
 |      C++: void RemoveObserver(unsigned long tag)
 |
 |  RemoveObservers(...)
 |      RemoveObservers(self, event:int, __b:vtkCommand) -> None
 |      C++: void RemoveObservers(unsigned long event, vtkCommand *)
 |      RemoveObservers(self, event:str, __b:vtkCommand) -> None
 |      C++: void RemoveObservers(const char *event, vtkCommand *)
 |      RemoveObservers(self, event:int) -> None
 |      C++: void RemoveObservers(unsigned long event)
 |      RemoveObservers(self, event:str) -> None
 |      C++: void RemoveObservers(const char *event)
 |
 |  SetDebug(...)
 |      SetDebug(self, debugFlag:bool) -> None
 |      C++: void SetDebug(bool debugFlag)
 |
 |      Set the value of the debug flag. A true value turns debugging on.
 |
 |  SetGlobalWarningDisplay(...)
 |      SetGlobalWarningDisplay(val:int) -> None
 |      C++: static void SetGlobalWarningDisplay(int val)
 |
 |      This is a global flag that controls whether any debug, warning or
 |      error messages are displayed.
 |
 |  ----------------------------------------------------------------------
 |  Methods inherited from vtkmodules.vtkCommonCore.vtkObjectBase:
 |
 |  FastDelete(...)
 |      FastDelete(self) -> None
 |      C++: virtual void FastDelete()
 |
 |      Delete a reference to this object.  This version will not invoke
 |      garbage collection and can potentially leak the object if it is
 |      part of a reference loop.  Use this method only when it is known
 |      that the object has another reference and would not be collected
 |      if a full garbage collection check were done.
 |
 |  GetAddressAsString(...)
 |      GetAddressAsString(self, classname:str) -> str
 |
 |      Get address of C++ object in format 'Addr=%p' after casting to
 |      the specified type.  This method is obsolete, you can get the
 |      same information from o.__this__.
 |
 |  GetClassName(...)
 |      GetClassName(self) -> str
 |      C++: const char *GetClassName()
 |
 |      Return the class name as a string.
 |
 |  GetIsInMemkind(...)
 |      GetIsInMemkind(self) -> bool
 |      C++: bool GetIsInMemkind()
 |
 |      A local state flag that remembers whether this object lives in
 |      the normal or extended memory space.
 |
 |  GetReferenceCount(...)
 |      GetReferenceCount(self) -> int
 |      C++: int GetReferenceCount()
 |
 |      Return the current reference count of this object.
 |
 |  GetUsingMemkind(...)
 |      GetUsingMemkind() -> bool
 |      C++: static bool GetUsingMemkind()
 |
 |      A global state flag that controls whether vtkObjects are
 |      constructed in the usual way (the default) or within the extended
 |      memory space.
 |
 |  InitializeObjectBase(...)
 |      InitializeObjectBase(self) -> None
 |      C++: void InitializeObjectBase()
 |
 |  Register(...)
 |      Register(self, o:vtkObjectBase)
 |      C++: virtual void Register(vtkObjectBase *o)
 |
 |      Increase the reference count by 1.
 |
 |  SetMemkindDirectory(...)
 |      SetMemkindDirectory(directoryname:str) -> None
 |      C++: static void SetMemkindDirectory(const char *directoryname)
 |
 |      The name of a directory, ideally mounted -o dax, to memory map an
 |      extended memory space within. This must be called before any
 |      objects are constructed in the extended space. It can not be
 |      changed once setup.
 |
 |  SetReferenceCount(...)
 |      SetReferenceCount(self, __a:int) -> None
 |      C++: void SetReferenceCount(int)
 |
 |      Sets the reference count. (This is very dangerous, use with
 |      care.)
 |
 |  UnRegister(...)
 |      UnRegister(self, o:vtkObjectBase)
 |      C++: virtual void UnRegister(vtkObjectBase* o)
 |
 |      Decrease the reference count (release by another object). This
 |      has the same effect as invoking Delete() (i.e., it reduces the
 |      reference count by 1).
 |
 |  ----------------------------------------------------------------------
 |  Data descriptors inherited from Grid:
 |
 |  dimensions
 |      Return the grid's dimensions.
 |
 |      These are effectively the number of points along each of the
 |      three dataset axes.
 |
 |      Examples
 |      --------
 |      Create a uniform grid with dimensions ``(1, 2, 3)``.
 |
 |      >>> import pyvista
 |      >>> grid = pyvista.UniformGrid(dimensions=(2, 3, 4))
 |      >>> grid.dimensions
 |      (2, 3, 4)
 |      >>> grid.plot(show_edges=True)
 |
 |      Set the dimensions to ``(3, 4, 5)``
 |
 |      >>> grid.dimensions = (3, 4, 5)
 |      >>> grid.plot(show_edges=True)
 |
 |  ----------------------------------------------------------------------
 |  Methods inherited from pyvista.core.dataset.DataSet:
 |
 |  __getattr__(self, item) -> Any
 |      Get attribute from base class if not found.
 |
 |  __getitem__(self, index: Union[Iterable, str]) -> numpy.ndarray
 |      Search both point, cell, and field data for an array.
 |
 |  __setitem__(self, name: str, scalars: numpy.ndarray)
 |      Add/set an array in the point_data, or cell_data accordingly.
 |
 |      It depends on the array's length, or specified mode.
 |
 |  cast_to_pointset(self, pass_cell_data: bool = False) -> 'pyvista.PointSet'
 |      Extract the points of this dataset and return a :class:`pyvista.PointSet`.
 |
 |      Parameters
 |      ----------
 |      pass_cell_data : bool, optional
 |          Run the ``cell_data_to_point_data`` filter and pass cell data
 |          fields to the new pointset.
 |
 |      Returns
 |      -------
 |      pyvista.PointSet
 |          Dataset cast into a :class:`pyvista.PointSet`.
 |
 |      Notes
 |      -----
 |      This will produce a deep copy of the points and point/cell data of
 |      the original mesh.
 |
 |      Examples
 |      --------
 |      >>> import pyvista
 |      >>> mesh = pyvista.Wavelet()
 |      >>> pointset = mesh.cast_to_pointset()
 |      >>> type(pointset)
 |      <class 'pyvista.core.pointset.PointSet'>
 |
 |  cast_to_poly_points(self, pass_cell_data: bool = False) -> 'pyvista.PolyData'
 |      Extract the points of this dataset and return a :class:`pyvista.PolyData`.
 |
 |      Parameters
 |      ----------
 |      pass_cell_data : bool, optional
 |          Run the ``cell_data_to_point_data`` filter and pass cell data
 |          fields to the new pointset.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Dataset cast into a :class:`pyvista.PolyData`.
 |
 |      Notes
 |      -----
 |      This will produce a deep copy of the points and point/cell data of
 |      the original mesh.
 |
 |      Examples
 |      --------
 |      >>> from pyvista import examples
 |      >>> mesh = examples.load_uniform()
 |      >>> points = mesh.cast_to_poly_points(pass_cell_data=True)
 |      >>> type(points)
 |      <class 'pyvista.core.pointset.PolyData'>
 |      >>> points.n_arrays
 |      2
 |      >>> points.point_data
 |      pyvista DataSetAttributes
 |      Association     : POINT
 |      Active Scalars  : Spatial Point Data
 |      Active Vectors  : None
 |      Active Texture  : None
 |      Active Normals  : None
 |      Contains arrays :
 |          Spatial Point Data      float64    (1000,)              SCALARS
 |      >>> points.cell_data
 |      pyvista DataSetAttributes
 |      Association     : CELL
 |      Active Scalars  : None
 |      Active Vectors  : None
 |      Active Texture  : None
 |      Active Normals  : None
 |      Contains arrays :
 |          Spatial Cell Data       float64    (1000,)
 |
 |  cast_to_unstructured_grid(self) -> 'pyvista.UnstructuredGrid'
 |      Get a new representation of this object as a :class:`pyvista.UnstructuredGrid`.
 |
 |      Returns
 |      -------
 |      pyvista.UnstructuredGrid
 |          Dataset cast into a :class:`pyvista.UnstructuredGrid`.
 |
 |      Examples
 |      --------
 |      Cast a :class:`pyvista.PolyData` to a
 |      :class:`pyvista.UnstructuredGrid`.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Sphere()
 |      >>> type(mesh)
 |      <class 'pyvista.core.pointset.PolyData'>
 |      >>> grid = mesh.cast_to_unstructured_grid()
 |      >>> type(grid)
 |      <class 'pyvista.core.pointset.UnstructuredGrid'>
 |
 |  cell_bounds(self, ind: int) -> Tuple[Union[float, int, numpy.number], Union[float, int, numpy.number], Union[float, int, numpy.number], Union[float, int, numpy.number], Union[float, int, numpy.number], Union[float, int, numpy.number]]
 |      Return the bounding box of a cell.
 |
 |      ..  deprecated:: 0.38.0
 |          Use :attr:`pyvista.Cell.bounds` instead.
 |
 |      Parameters
 |      ----------
 |      ind : int
 |          Cell ID.
 |
 |      Returns
 |      -------
 |      tuple(float)
 |          The limits of the cell in the X, Y and Z directions respectively.
 |
 |  cell_n_points(self, ind: int) -> int
 |      Return the number of points in a cell.
 |
 |      .. deprecated:: 0.38.0
 |          Use :attr:`pyvista.Cell.n_points` instead.
 |
 |      Parameters
 |      ----------
 |      ind : int
 |          Cell ID.
 |
 |      Returns
 |      -------
 |      int
 |          Number of points in the cell.
 |
 |  cell_point_ids(self, ind: int) -> List[int]
 |      Return the point ids in a cell.
 |
 |      .. deprecated:: 0.38.0
 |          You can use :attr:`pyvista.Cell.point_ids` instead.
 |
 |      Parameters
 |      ----------
 |      ind : int
 |          Cell ID.
 |
 |      Returns
 |      -------
 |      list[int]
 |          Point Ids that are associated with the cell.
 |
 |  cell_points(self, ind: int) -> numpy.ndarray
 |      Return the points in a cell.
 |
 |      ..  deprecated:: 0.38.0
 |          Use :attr:`pyvista.Cell.points` instead.
 |
 |      Parameters
 |      ----------
 |      ind : int
 |          Cell ID.
 |
 |      Returns
 |      -------
 |      numpy.ndarray
 |          An array of floats with shape (number of points, 3) containing the coordinates of the
 |          cell corners.
 |
 |  cell_type(self, ind: int) -> int
 |      Return the type of a cell.
 |
 |      .. deprecated:: 0.38.0
 |          You can use :attr:`pyvista.Cell.type` instead.
 |
 |      Parameters
 |      ----------
 |      ind : int
 |          Cell type ID.
 |
 |      Returns
 |      -------
 |      int
 |          VTK cell type. See `vtkCellType.h <https://vtk.org/doc/nightly/html/vtkCellType_8h_source.html>`_ .
 |
 |  clear_cell_data(self)
 |      Remove all cell arrays.
 |
 |  clear_data(self)
 |      Remove all arrays from point/cell/field data.
 |
 |      Examples
 |      --------
 |      Clear all arrays from a mesh.
 |
 |      >>> import pyvista
 |      >>> import numpy as np
 |      >>> mesh = pyvista.Sphere()
 |      >>> mesh.point_data.keys()
 |      ['Normals']
 |      >>> mesh.clear_data()
 |      >>> mesh.point_data.keys()
 |      []
 |
 |  clear_point_data(self)
 |      Remove all point arrays.
 |
 |      Examples
 |      --------
 |      Clear all point arrays from a mesh.
 |
 |      >>> import pyvista
 |      >>> import numpy as np
 |      >>> mesh = pyvista.Sphere()
 |      >>> mesh.point_data.keys()
 |      ['Normals']
 |      >>> mesh.clear_point_data()
 |      >>> mesh.point_data.keys()
 |      []
 |
 |  clear_textures(self)
 |      Clear the textures from this mesh.
 |
 |      Examples
 |      --------
 |      Clear the texture from the globe example.
 |
 |      >>> from pyvista import examples
 |      >>> globe = examples.load_globe()
 |      >>> globe.textures
 |      {'2k_earth_daymap': ...}
 |      >>> globe.clear_textures()
 |      >>> globe.textures
 |      {}
 |
 |  copy_from(self, mesh: vtkmodules.vtkCommonDataModel.vtkDataSet, deep: bool = True)
 |      Overwrite this dataset inplace with the new dataset's geometries and data.
 |
 |      Parameters
 |      ----------
 |      mesh : vtk.vtkDataSet
 |          The overwriting mesh.
 |
 |      deep : bool, default: True
 |          Whether to perform a deep or shallow copy.
 |
 |      Examples
 |      --------
 |      Create two meshes and overwrite ``mesh_a`` with ``mesh_b``.
 |      Show that ``mesh_a`` is equal to ``mesh_b``.
 |
 |      >>> import pyvista
 |      >>> mesh_a = pyvista.Sphere()
 |      >>> mesh_b = pyvista.Cube()
 |      >>> mesh_a.copy_from(mesh_b)
 |      >>> mesh_a == mesh_b
 |      True
 |
 |  copy_meta_from(self, ido: 'DataSet', deep: bool = True)
 |      Copy pyvista meta data onto this object from another object.
 |
 |      Parameters
 |      ----------
 |      ido : pyvista.DataSet
 |          Dataset to copy the metadata from.
 |
 |      deep : bool, optional
 |          Deep or shallow copy.
 |
 |  find_cells_along_line(self, pointa: Iterable[float], pointb: Iterable[float], tolerance=0.0) -> numpy.ndarray
 |      Find the index of cells in this mesh along a line.
 |
 |      Line is defined from ``pointa`` to ``pointb``.
 |
 |      Parameters
 |      ----------
 |      pointa : iterable(float)
 |          Length 3 coordinate of the start of the line.
 |
 |      pointb : iterable(float)
 |          Length 3 coordinate of the end of the line.
 |
 |      tolerance : float, optional
 |          The absolute tolerance to use to find cells along line.
 |
 |      Returns
 |      -------
 |      numpy.ndarray
 |          Index or indices of the cell in this mesh that are closest
 |          to the given point.
 |
 |      See Also
 |      --------
 |      DataSet.find_closest_point
 |      DataSet.find_closest_cell
 |      DataSet.find_containing_cell
 |      DataSet.find_cells_within_bounds
 |
 |      Examples
 |      --------
 |      >>> import pyvista
 |      >>> mesh = pyvista.Sphere()
 |      >>> index = mesh.find_cells_along_line([0, 0, 0], [0, 0, 1.0])
 |
 |  find_cells_within_bounds(self, bounds: Iterable[float]) -> numpy.ndarray
 |      Find the index of cells in this mesh within bounds.
 |
 |      Parameters
 |      ----------
 |      bounds : iterable(float)
 |          Bounding box. The form is: ``[xmin, xmax, ymin, ymax, zmin, zmax]``.
 |
 |      Returns
 |      -------
 |      numpy.ndarray
 |          Index or indices of the cell in this mesh that are closest
 |          to the given point.
 |
 |      See Also
 |      --------
 |      DataSet.find_closest_point
 |      DataSet.find_closest_cell
 |      DataSet.find_containing_cell
 |      DataSet.find_cells_along_line
 |
 |      Examples
 |      --------
 |      >>> import pyvista
 |      >>> mesh = pyvista.Cube()
 |      >>> index = mesh.find_cells_within_bounds([-2.0, 2.0, -2.0, 2.0, -2.0, 2.0])
 |
 |  find_closest_cell(self, point: Union[numpy.ndarray, Sequence[Union[List[float], Tuple[float, float, float], numpy.ndarray]], Sequence[Union[float, int, numpy.number]]], return_closest_point: bool = False) -> Union[int, numpy.ndarray, Tuple[Union[int, numpy.ndarray], numpy.ndarray]]
 |      Find index of closest cell in this mesh to the given point.
 |
 |      Parameters
 |      ----------
 |      point : Sequence(float) or np.ndarray
 |          Coordinates of point to query (length 3) or a ``numpy`` array of ``n``
 |          points with shape ``(n, 3)``.
 |
 |      return_closest_point : bool, optional
 |          If ``True``, the closest point within a mesh cell to that point is
 |          returned.  This is not necessarily the closest nodal point on the
 |          mesh.  Default is ``False``.
 |
 |      Returns
 |      -------
 |      int or numpy.ndarray
 |          Index or indices of the cell in this mesh that is/are closest
 |          to the given point(s).
 |
 |          .. versionchanged:: 0.35.0
 |             Inputs of shape ``(1, 3)`` now return a :class:`numpy.ndarray`
 |             of shape ``(1,)``.
 |
 |      numpy.ndarray
 |          Point or points inside a cell of the mesh that is/are closest
 |          to the given point(s).  Only returned if
 |          ``return_closest_point=True``.
 |
 |          .. versionchanged:: 0.35.0
 |             Inputs of shape ``(1, 3)`` now return a :class:`numpy.ndarray`
 |             of the same shape.
 |
 |      Warnings
 |      --------
 |      This method may still return a valid cell index even if the point
 |      contains a value like ``numpy.inf`` or ``numpy.nan``.
 |
 |      See Also
 |      --------
 |      DataSet.find_closest_point
 |      DataSet.find_containing_cell
 |      DataSet.find_cells_along_line
 |      DataSet.find_cells_within_bounds
 |
 |      Examples
 |      --------
 |      Find nearest cell on a sphere centered on the
 |      origin to the point ``[0.1, 0.2, 0.3]``.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Sphere()
 |      >>> point = [0.1, 0.2, 0.3]
 |      >>> index = mesh.find_closest_cell(point)
 |      >>> index
 |      591
 |
 |      Make sure that this cell indeed is the closest to
 |      ``[0.1, 0.2, 0.3]``.
 |
 |      >>> import numpy as np
 |      >>> cell_centers = mesh.cell_centers()
 |      >>> relative_position = cell_centers.points - point
 |      >>> distance = np.linalg.norm(relative_position, axis=1)
 |      >>> np.argmin(distance)
 |      591
 |
 |      Find the nearest cells to several random points that
 |      are centered on the origin.
 |
 |      >>> points = 2 * np.random.random((5000, 3)) - 1
 |      >>> indices = mesh.find_closest_cell(points)
 |      >>> indices.shape
 |      (5000,)
 |
 |      For the closest cell, find the point inside the cell that is
 |      closest to the supplied point.  The rectangle is a unit square
 |      with 1 cell and 4 nodal points at the corners in the plane with
 |      ``z`` normal and ``z=0``.  The closest point inside the cell is
 |      not usually at a nodal point.
 |
 |      >>> unit_square = pyvista.Rectangle()
 |      >>> index, closest_point = unit_square.find_closest_cell(
 |      ...     [0.25, 0.25, 0.5],
 |      ...     return_closest_point=True
 |      ... )
 |      >>> closest_point
 |      array([0.25, 0.25, 0.  ])
 |
 |      But, the closest point can be a nodal point, although the index of
 |      that point is not returned.  If the closest nodal point by index is
 |      desired, see :func:`DataSet.find_closest_point`.
 |
 |      >>> index, closest_point = unit_square.find_closest_cell(
 |      ...     [1.0, 1.0, 0.5],
 |      ...     return_closest_point=True
 |      ... )
 |      >>> closest_point
 |      array([1., 1., 0.])
 |
 |  find_closest_point(self, point: Iterable[float], n=1) -> int
 |      Find index of closest point in this mesh to the given point.
 |
 |      If wanting to query many points, use a KDTree with scipy or another
 |      library as those implementations will be easier to work with.
 |
 |      See: https://github.com/pyvista/pyvista-support/issues/107
 |
 |      Parameters
 |      ----------
 |      point : iterable(float)
 |          Length 3 coordinate of the point to query.
 |
 |      n : int, optional
 |          If greater than ``1``, returns the indices of the ``n`` closest
 |          points.
 |
 |      Returns
 |      -------
 |      int
 |          The index of the point in this mesh that is closest to the given point.
 |
 |      See Also
 |      --------
 |      DataSet.find_closest_cell
 |      DataSet.find_containing_cell
 |      DataSet.find_cells_along_line
 |      DataSet.find_cells_within_bounds
 |
 |      Examples
 |      --------
 |      Find the index of the closest point to ``(0, 1, 0)``.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Sphere()
 |      >>> index = mesh.find_closest_point((0, 1, 0))
 |      >>> index
 |      212
 |
 |      Get the coordinate of that point.
 |
 |      >>> mesh.points[index]
 |      pyvista_ndarray([-0.05218758,  0.49653167,  0.02706946], dtype=float32)
 |
 |  find_containing_cell(self, point: Union[numpy.ndarray, Sequence[Union[List[float], Tuple[float, float, float], numpy.ndarray]], Sequence[Union[float, int, numpy.number]]]) -> Union[int, numpy.ndarray]
 |      Find index of a cell that contains the given point.
 |
 |      Parameters
 |      ----------
 |      point : Sequence(float) or np.ndarray
 |          Coordinates of point to query (length 3) or a ``numpy`` array of ``n``
 |          points with shape ``(n, 3)``.
 |
 |      Returns
 |      -------
 |      int or numpy.ndarray
 |          Index or indices of the cell in this mesh that contains
 |          the given point.
 |
 |          .. versionchanged:: 0.35.0
 |             Inputs of shape ``(1, 3)`` now return a :class:`numpy.ndarray`
 |             of shape ``(1,)``.
 |
 |      See Also
 |      --------
 |      DataSet.find_closest_point
 |      DataSet.find_closest_cell
 |      DataSet.find_cells_along_line
 |      DataSet.find_cells_within_bounds
 |
 |      Examples
 |      --------
 |      A unit square with 16 equal sized cells is created and a cell
 |      containing the point ``[0.3, 0.3, 0.0]`` is found.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.UniformGrid(dimensions=[5, 5, 1], spacing=[1/4, 1/4, 0])
 |      >>> mesh
 |      UniformGrid...
 |      >>> mesh.find_containing_cell([0.3, 0.3, 0.0])
 |      5
 |
 |      A point outside the mesh domain will return ``-1``.
 |
 |      >>> mesh.find_containing_cell([0.3, 0.3, 1.0])
 |      -1
 |
 |      Find the cells that contain 1000 random points inside the mesh.
 |
 |      >>> import numpy as np
 |      >>> points = np.random.random((1000, 3))
 |      >>> indices = mesh.find_containing_cell(points)
 |      >>> indices.shape
 |      (1000,)
 |
 |  flip_normal(self, normal: List[float], point=None, transform_all_input_vectors=False, inplace=False)
 |      Flip mesh about the normal.
 |
 |      .. note::
 |          See also the notes at :func:`transform()
 |          <DataSetFilters.transform>` which is used by this filter
 |          under the hood.
 |
 |      Parameters
 |      ----------
 |      normal : tuple
 |         Normal vector to flip about.
 |
 |      point : list, optional
 |          Point to rotate about.  Defaults to center of mesh at
 |          :attr:`center <pyvista.DataSet.center>`.
 |
 |      transform_all_input_vectors : bool, optional
 |          When ``True``, all input vectors are
 |          transformed. Otherwise, only the points, normals and
 |          active vectors are transformed.
 |
 |      inplace : bool, optional
 |          Updates mesh in-place.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Dataset flipped about its normal.
 |
 |      Examples
 |      --------
 |      >>> import pyvista
 |      >>> from pyvista import examples
 |      >>> pl = pyvista.Plotter(shape=(1, 2))
 |      >>> pl.subplot(0, 0)
 |      >>> pl.show_axes()
 |      >>> mesh1 = examples.download_teapot()
 |      >>> _ = pl.add_mesh(mesh1)
 |      >>> pl.subplot(0, 1)
 |      >>> pl.show_axes()
 |      >>> mesh2 = mesh1.flip_normal([1.0, 1.0, 1.0], inplace=False)
 |      >>> _ = pl.add_mesh(mesh2)
 |      >>> pl.show(cpos="xy")
 |
 |  flip_x(self, point=None, transform_all_input_vectors=False, inplace=False)
 |      Flip mesh about the x-axis.
 |
 |      .. note::
 |          See also the notes at :func:`transform()
 |          <DataSetFilters.transform>` which is used by this filter
 |          under the hood.
 |
 |      Parameters
 |      ----------
 |      point : list, optional
 |          Point to rotate about.  Defaults to center of mesh at
 |          :attr:`center <pyvista.DataSet.center>`.
 |
 |      transform_all_input_vectors : bool, optional
 |          When ``True``, all input vectors are
 |          transformed. Otherwise, only the points, normals and
 |          active vectors are transformed.
 |
 |      inplace : bool, optional
 |          Updates mesh in-place.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Flipped dataset.
 |
 |      Examples
 |      --------
 |      >>> import pyvista
 |      >>> from pyvista import examples
 |      >>> pl = pyvista.Plotter(shape=(1, 2))
 |      >>> pl.subplot(0, 0)
 |      >>> pl.show_axes()
 |      >>> mesh1 = examples.download_teapot()
 |      >>> _ = pl.add_mesh(mesh1)
 |      >>> pl.subplot(0, 1)
 |      >>> pl.show_axes()
 |      >>> mesh2 = mesh1.flip_x(inplace=False)
 |      >>> _ = pl.add_mesh(mesh2)
 |      >>> pl.show(cpos="xy")
 |
 |  flip_y(self, point=None, transform_all_input_vectors=False, inplace=False)
 |      Flip mesh about the y-axis.
 |
 |      .. note::
 |          See also the notes at :func:`transform()
 |          <DataSetFilters.transform>` which is used by this filter
 |          under the hood.
 |
 |      Parameters
 |      ----------
 |      point : list, optional
 |          Point to rotate about.  Defaults to center of mesh at
 |          :attr:`center <pyvista.DataSet.center>`.
 |
 |      transform_all_input_vectors : bool, optional
 |          When ``True``, all input vectors are
 |          transformed. Otherwise, only the points, normals and
 |          active vectors are transformed.
 |
 |      inplace : bool, optional
 |          Updates mesh in-place.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Flipped dataset.
 |
 |      Examples
 |      --------
 |      >>> import pyvista
 |      >>> from pyvista import examples
 |      >>> pl = pyvista.Plotter(shape=(1, 2))
 |      >>> pl.subplot(0, 0)
 |      >>> pl.show_axes()
 |      >>> mesh1 = examples.download_teapot()
 |      >>> _ = pl.add_mesh(mesh1)
 |      >>> pl.subplot(0, 1)
 |      >>> pl.show_axes()
 |      >>> mesh2 = mesh1.flip_y(inplace=False)
 |      >>> _ = pl.add_mesh(mesh2)
 |      >>> pl.show(cpos="xy")
 |
 |  flip_z(self, point=None, transform_all_input_vectors=False, inplace=False)
 |      Flip mesh about the z-axis.
 |
 |      .. note::
 |          See also the notes at :func:`transform()
 |          <DataSetFilters.transform>` which is used by this filter
 |          under the hood.
 |
 |      Parameters
 |      ----------
 |      point : list, optional
 |          Point to rotate about.  Defaults to center of mesh at
 |          :attr:`center <pyvista.DataSet.center>`.
 |
 |      transform_all_input_vectors : bool, optional
 |          When ``True``, all input vectors are
 |          transformed. Otherwise, only the points, normals and
 |          active vectors are transformed.
 |
 |      inplace : bool, optional
 |          Updates mesh in-place.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Flipped dataset.
 |
 |      Examples
 |      --------
 |      >>> import pyvista
 |      >>> from pyvista import examples
 |      >>> pl = pyvista.Plotter(shape=(1, 2))
 |      >>> pl.subplot(0, 0)
 |      >>> pl.show_axes()
 |      >>> mesh1 = examples.download_teapot().rotate_x(90, inplace=False)
 |      >>> _ = pl.add_mesh(mesh1)
 |      >>> pl.subplot(0, 1)
 |      >>> pl.show_axes()
 |      >>> mesh2 = mesh1.flip_z(inplace=False)
 |      >>> _ = pl.add_mesh(mesh2)
 |      >>> pl.show(cpos="xz")
 |
 |  get_array(self, name: str, preference: Literal['cell', 'point', 'field'] = 'cell') -> 'pyvista.pyvista_ndarray'
 |      Search both point, cell and field data for an array.
 |
 |      Parameters
 |      ----------
 |      name : str
 |          Name of the array.
 |
 |      preference : str, optional
 |          When scalars is specified, this is the preferred array
 |          type to search for in the dataset.  Must be either
 |          ``'point'``, ``'cell'``, or ``'field'``.
 |
 |      Returns
 |      -------
 |      pyvista.pyvista_ndarray
 |          Requested array.
 |
 |      Examples
 |      --------
 |      Create a DataSet with a variety of arrays.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Cube()
 |      >>> mesh.clear_data()
 |      >>> mesh.point_data['point-data'] = range(mesh.n_points)
 |      >>> mesh.cell_data['cell-data'] = range(mesh.n_cells)
 |      >>> mesh.field_data['field-data'] = ['a', 'b', 'c']
 |      >>> mesh.array_names
 |      ['point-data', 'field-data', 'cell-data']
 |
 |      Get the point data array.
 |
 |      >>> mesh.get_array('point-data')
 |      pyvista_ndarray([0, 1, 2, 3, 4, 5, 6, 7])
 |
 |      Get the cell data array.
 |
 |      >>> mesh.get_array('cell-data')
 |      pyvista_ndarray([0, 1, 2, 3, 4, 5])
 |
 |      Get the field data array.
 |
 |      >>> mesh.get_array('field-data')
 |      pyvista_ndarray(['a', 'b', 'c'], dtype='<U1')
 |
 |  get_array_association(self, name: str, preference: Literal['cell', 'point', 'field'] = 'cell') -> pyvista.utilities.helpers.FieldAssociation
 |      Get the association of an array.
 |
 |      Parameters
 |      ----------
 |      name : str
 |          Name of the array.
 |
 |      preference : str, optional
 |          When ``name`` is specified, this is the preferred array
 |          association to search for in the dataset.  Must be either
 |          ``'point'``, ``'cell'``, or ``'field'``.
 |
 |      Returns
 |      -------
 |      pyvista.FieldAssociation
 |          Field association of the array.
 |
 |      Examples
 |      --------
 |      Create a DataSet with a variety of arrays.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Cube()
 |      >>> mesh.clear_data()
 |      >>> mesh.point_data['point-data'] = range(mesh.n_points)
 |      >>> mesh.cell_data['cell-data'] = range(mesh.n_cells)
 |      >>> mesh.field_data['field-data'] = ['a', 'b', 'c']
 |      >>> mesh.array_names
 |      ['point-data', 'field-data', 'cell-data']
 |
 |      Get the point data array association.
 |
 |      >>> mesh.get_array_association('point-data')
 |      <FieldAssociation.POINT: 0>
 |
 |      Get the cell data array association.
 |
 |      >>> mesh.get_array_association('cell-data')
 |      <FieldAssociation.CELL: 1>
 |
 |      Get the field data array association.
 |
 |      >>> mesh.get_array_association('field-data')
 |      <FieldAssociation.NONE: 2>
 |
 |  get_cell(self, index: int) -> 'pyvista.Cell'
 |      Return a :class:`pyvista.Cell` object.
 |
 |      Parameters
 |      ----------
 |      index : int
 |          Cell ID.
 |
 |      Returns
 |      -------
 |      pyvista.Cell
 |          The i-th pyvista.Cell.
 |
 |      Notes
 |      -----
 |      Cells returned from this method are deep copies of the original
 |      cells. Changing properties (for example, ``points``) will not affect
 |      the dataset they originated from.
 |
 |      Examples
 |      --------
 |      Get the 0-th cell.
 |
 |      >>> from pyvista import examples
 |      >>> mesh = examples.load_airplane()
 |      >>> mesh.get_cell(0) # doctest:+SKIP
 |      GenericCell (0x7f6304e0a730)
 |        Type: CellType.TRIANGLE
 |        Linear:       True
 |        Dimension:    2
 |        N Points:     3
 |        N Faces:      0
 |        N Edges:      3
 |        X Bounds:     8.970e+02, 9.075e+02
 |        Y Bounds:     4.876e+01, 5.549e+01
 |        Z Bounds:     8.075e+01, 8.366e+01
 |
 |  get_data_range(self, arr_var: Union[str, numpy.ndarray, NoneType] = None, preference='cell') -> Tuple[Union[float, numpy.ndarray], Union[float, numpy.ndarray]]
 |      Get the non-NaN min and max of a named array.
 |
 |      Parameters
 |      ----------
 |      arr_var : str, np.ndarray, optional
 |          The name of the array to get the range. If ``None``, the
 |          active scalars is used.
 |
 |      preference : str, optional
 |          When scalars is specified, this is the preferred array type
 |          to search for in the dataset.  Must be either ``'point'``,
 |          ``'cell'``, or ``'field'``.
 |
 |      Returns
 |      -------
 |      tuple
 |          ``(min, max)`` of the named array.
 |
 |  overwrite(self, mesh: vtkmodules.vtkCommonDataModel.vtkDataSet)
 |      Overwrite this dataset inplace with the new dataset's geometries and data.
 |
 |      .. deprecated:: 0.37.0
 |          Use :func:`DataSet.copy_from` instead.
 |
 |      Parameters
 |      ----------
 |      mesh : vtk.vtkDataSet
 |          The overwriting mesh.
 |
 |  plot(var_item, off_screen=None, full_screen=None, screenshot=None, interactive=True, cpos=None, window_size=None, show_bounds=False, show_axes=None, notebook=None, background=None, text='', return_img=False, eye_dome_lighting=False, volume=False, parallel_projection=False, jupyter_backend=None, return_viewer=False, return_cpos=False, jupyter_kwargs=None, theme=None, hidden_line_removal=None, anti_aliasing=None, zoom=None, border=None, border_color='k', border_width=2.0, ssao=False, **kwargs)
 |      Plot a PyVista, numpy, or vtk object.
 |
 |      Parameters
 |      ----------
 |      var_item : pyvista.DataSet, vtk, or numpy object
 |          PyVista, VTK, or ``numpy`` object to be plotted.
 |
 |      off_screen : bool, optional
 |          Plots off screen when ``True``.  Helpful for saving
 |          screenshots without a window popping up.  Defaults to the
 |          global setting ``pyvista.OFF_SCREEN``.
 |
 |      full_screen : bool, optional
 |          Opens window in full screen.  When enabled, ignores
 |          ``window_size``.  Defaults to active theme setting in
 |          :attr:`pyvista.global_theme.full_screen
 |          <pyvista.themes.DefaultTheme.full_screen>`.
 |
 |      screenshot : str or bool, optional
 |          Saves screenshot to file when enabled.  See:
 |          :func:`Plotter.screenshot() <pyvista.Plotter.screenshot>`.
 |          Default ``False``.
 |
 |          When ``True``, takes screenshot and returns ``numpy`` array of
 |          image.
 |
 |      interactive : bool, optional
 |          Allows user to pan and move figure.  Defaults to
 |          :attr:`pyvista.global_theme.interactive <pyvista.themes.DefaultTheme.interactive>`.
 |
 |      cpos : list, optional
 |          List of camera position, focal point, and view up.
 |
 |      window_size : list, optional
 |          Window size in pixels.  Defaults to global theme
 |          :attr:`pyvista.global_theme.window_size <pyvista.themes.DefaultTheme.window_size>`.
 |
 |      show_bounds : bool, optional
 |          Shows mesh bounds when ``True``.  Default ``False``.
 |
 |      show_axes : bool, optional
 |          Shows a vtk axes widget.  If ``None``, enabled according to
 |          :attr:`pyvista.global_theme.axes.show <pyvista.themes._AxesConfig.show>`.
 |
 |      notebook : bool, optional
 |          When ``True``, the resulting plot is placed inline a jupyter
 |          notebook.  Assumes a jupyter console is active.
 |
 |      background : ColorLike, optional
 |          Color of the background.
 |
 |      text : str, optional
 |          Adds text at the bottom of the plot.
 |
 |      return_img : bool, optional
 |          Returns numpy array of the last image rendered.
 |
 |      eye_dome_lighting : bool, optional
 |          Enables eye dome lighting.
 |
 |      volume : bool, optional
 |          Use the :func:`Plotter.add_volume()
 |          <pyvista.Plotter.add_volume>` method for volume rendering.
 |
 |      parallel_projection : bool, optional
 |          Enable parallel projection.
 |
 |      jupyter_backend : str, optional
 |          Jupyter notebook plotting backend to use.  One of the
 |          following:
 |
 |          * ``'none'`` : Do not display in the notebook.
 |          * ``'static'`` : Display a static figure.
 |          * ``'ipygany'`` : Show a ``ipygany`` widget
 |          * ``'panel'`` : Show a ``panel`` widget.
 |
 |          This can also be set globally with
 |          :func:`pyvista.set_jupyter_backend`.
 |
 |      return_viewer : bool, optional
 |          Return the jupyterlab viewer, scene, or display object
 |          when plotting with jupyter notebook.
 |
 |      return_cpos : bool, optional
 |          Return the last camera position from the render window
 |          when enabled.  Defaults to value in theme settings.
 |
 |      jupyter_kwargs : dict, optional
 |          Keyword arguments for the Jupyter notebook plotting backend.
 |
 |      theme : pyvista.themes.DefaultTheme, optional
 |          Plot-specific theme.
 |
 |      hidden_line_removal : bool, optional
 |          Wireframe geometry will be drawn using hidden line removal if
 |          the rendering engine supports it.  See
 |          :func:`Plotter.enable_hidden_line_removal
 |          <Plotter.enable_hidden_line_removal>`.  Defaults to the
 |          theme setting :attr:`pyvista.global_theme.hidden_line_removal
 |          <pyvista.themes.DefaultTheme.hidden_line_removal>`.
 |
 |      anti_aliasing : bool, optional
 |          Enable or disable anti-aliasing.  Defaults to the theme
 |          setting :attr:`pyvista.global_theme.anti_aliasing
 |          <pyvista.themes.DefaultTheme.anti_aliasing>`.
 |
 |      zoom : float, str, optional
 |          Camera zoom.  Either ``'tight'`` or a float. A value greater than 1 is
 |          a zoom-in, a value less than 1 is a zoom-out.  Must be greater than 0.
 |
 |      border : bool, optional
 |          Draw a border around each render window.  Default ``False``.
 |
 |      border_color : ColorLike, optional
 |          Either a string, rgb list, or hex color string.  For example:
 |
 |              * ``color='white'``
 |              * ``color='w'``
 |              * ``color=[1.0, 1.0, 1.0]``
 |              * ``color='#FFFFFF'``
 |
 |      border_width : float, optional
 |          Width of the border in pixels when enabled.
 |
 |      ssao : bool, optional
 |          Enable surface space ambient occlusion (SSAO). See
 |          :func:`Plotter.enable_ssao` for more details.
 |
 |      **kwargs : optional keyword arguments
 |          See :func:`pyvista.Plotter.add_mesh` for additional options.
 |
 |      Returns
 |      -------
 |      cpos : list
 |          List of camera position, focal point, and view up.
 |          Returned only when ``return_cpos=True`` or set in the
 |          default global or plot theme.  Not returned when in a
 |          jupyter notebook and ``return_viewer=True``.
 |
 |      image : np.ndarray
 |          Numpy array of the last image when either ``return_img=True``
 |          or ``screenshot=True`` is set. Not returned when in a
 |          jupyter notebook with ``return_viewer=True``. Optionally
 |          contains alpha values. Sized:
 |
 |          * [Window height x Window width x 3] if the theme sets
 |            ``transparent_background=False``.
 |          * [Window height x Window width x 4] if the theme sets
 |            ``transparent_background=True``.
 |
 |      widget
 |          IPython widget when ``return_viewer=True``.
 |
 |      Examples
 |      --------
 |      Plot a simple sphere while showing its edges.
 |
 |      >>> import pyvista as pv
 |      >>> mesh = pv.Sphere()
 |      >>> mesh.plot(show_edges=True)
 |
 |      Plot a volume mesh. Color by distance from the center of the
 |      UniformGrid. Note ``volume=True`` is passed.
 |
 |      >>> import numpy as np
 |      >>> grid = pv.UniformGrid(dimensions=(32, 32, 32), spacing=(0.5, 0.5, 0.5))
 |      >>> grid['data'] = np.linalg.norm(grid.center - grid.points, axis=1)
 |      >>> grid['data'] = np.abs(grid['data'] - grid['data'].max())**3
 |      >>> grid.plot(volume=True)
 |
 |  point_is_inside_cell(self, ind: int, point: Union[numpy.ndarray, Sequence[Union[List[float], Tuple[float, float, float], numpy.ndarray]], Sequence[Union[float, int, numpy.number]]]) -> Union[int, numpy.ndarray]
 |      Return whether one or more points are inside a cell.
 |
 |      .. versionadded:: 0.35.0
 |
 |      Parameters
 |      ----------
 |      ind : int
 |          Cell ID.
 |
 |      point : Sequence[float] or np.ndarray
 |          Coordinates of point to query (length 3) or a ``numpy`` array of ``n``
 |          points with shape ``(n, 3)``.
 |
 |      Returns
 |      -------
 |      bool or numpy.ndarray
 |          Whether point(s) is/are inside cell. A scalar bool is only returned if
 |          the input point has shape ``(3,)``.
 |
 |      Examples
 |      --------
 |      >>> from pyvista import examples
 |      >>> mesh = examples.load_hexbeam()
 |      >>> mesh.cell[0].bounds
 |      (0.0, 0.5, 0.0, 0.5, 0.0, 0.5)
 |      >>> mesh.point_is_inside_cell(0, [0.2, 0.2, 0.2])
 |      True
 |
 |  rename_array(self, old_name: str, new_name: str, preference='cell')
 |      Change array name by searching for the array then renaming it.
 |
 |      Parameters
 |      ----------
 |      old_name : str
 |          Name of the array to rename.
 |
 |      new_name : str
 |          Name to rename the array to.
 |
 |      preference : str, optional
 |          If there are two arrays of the same name associated with
 |          points, cells, or field data, it will prioritize an array
 |          matching this type.  Can be either ``'cell'``,
 |          ``'field'``, or ``'point'``.
 |
 |      Examples
 |      --------
 |      Create a cube, assign a point array to the mesh named
 |      ``'my_array'``, and rename it to ``'my_renamed_array'``.
 |
 |      >>> import pyvista
 |      >>> import numpy as np
 |      >>> cube = pyvista.Cube()
 |      >>> cube['my_array'] = range(cube.n_points)
 |      >>> cube.rename_array('my_array', 'my_renamed_array')
 |      >>> cube['my_renamed_array']
 |      pyvista_ndarray([0, 1, 2, 3, 4, 5, 6, 7])
 |
 |  rotate_vector(self, vector: Iterable[float], angle: float, point=(0.0, 0.0, 0.0), transform_all_input_vectors=False, inplace=False)
 |      Rotate mesh about a vector.
 |
 |      .. note::
 |          See also the notes at :func:`transform()
 |          <DataSetFilters.transform>` which is used by this filter
 |          under the hood.
 |
 |      Parameters
 |      ----------
 |      vector : Iterable
 |          Axes to rotate about.
 |
 |      angle : float
 |          Angle in degrees to rotate about the vector.
 |
 |      point : list, optional
 |          Point to rotate about.  Defaults to origin ``(0.0, 0.0, 0.0)``.
 |
 |      transform_all_input_vectors : bool, optional
 |          When ``True``, all input vectors are
 |          transformed. Otherwise, only the points, normals and
 |          active vectors are transformed.
 |
 |      inplace : bool, optional
 |          Updates mesh in-place.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Rotated dataset.
 |
 |      Examples
 |      --------
 |      Rotate a mesh 30 degrees about the ``(1, 1, 1)`` axis.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Cube()
 |      >>> rot = mesh.rotate_vector((1, 1, 1), 30, inplace=False)
 |
 |      Plot the rotated mesh.
 |
 |      >>> pl = pyvista.Plotter()
 |      >>> _ = pl.add_mesh(rot)
 |      >>> _ = pl.add_mesh(mesh, style='wireframe', line_width=3)
 |      >>> _ = pl.add_axes_at_origin()
 |      >>> pl.show()
 |
 |  rotate_x(self, angle: float, point=(0.0, 0.0, 0.0), transform_all_input_vectors=False, inplace=False)
 |      Rotate mesh about the x-axis.
 |
 |      .. note::
 |          See also the notes at :func:`transform()
 |          <DataSetFilters.transform>` which is used by this filter
 |          under the hood.
 |
 |      Parameters
 |      ----------
 |      angle : float
 |          Angle in degrees to rotate about the x-axis.
 |
 |      point : list, optional
 |          Point to rotate about.  Defaults to origin ``(0.0, 0.0, 0.0)``.
 |
 |      transform_all_input_vectors : bool, optional
 |          When ``True``, all input vectors are
 |          transformed. Otherwise, only the points, normals and
 |          active vectors are transformed.
 |
 |      inplace : bool, optional
 |          Updates mesh in-place.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Rotated dataset.
 |
 |      Examples
 |      --------
 |      Rotate a mesh 30 degrees about the x-axis.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Cube()
 |      >>> rot = mesh.rotate_x(30, inplace=False)
 |
 |      Plot the rotated mesh.
 |
 |      >>> pl = pyvista.Plotter()
 |      >>> _ = pl.add_mesh(rot)
 |      >>> _ = pl.add_mesh(mesh, style='wireframe', line_width=3)
 |      >>> _ = pl.add_axes_at_origin()
 |      >>> pl.show()
 |
 |  rotate_y(self, angle: float, point=(0.0, 0.0, 0.0), transform_all_input_vectors=False, inplace=False)
 |      Rotate mesh about the y-axis.
 |
 |      .. note::
 |          See also the notes at :func:`transform()
 |          <DataSetFilters.transform>` which is used by this filter
 |          under the hood.
 |
 |      Parameters
 |      ----------
 |      angle : float
 |          Angle in degrees to rotate about the y-axis.
 |
 |      point : float, optional
 |          Point to rotate about.
 |
 |      transform_all_input_vectors : bool, optional
 |          When ``True``, all input vectors are
 |          transformed. Otherwise, only the points, normals and
 |          active vectors are transformed.
 |
 |      inplace : bool, optional
 |          Updates mesh in-place.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Rotated dataset.
 |
 |      Examples
 |      --------
 |      Rotate a cube 30 degrees about the y-axis.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Cube()
 |      >>> rot = mesh.rotate_y(30, inplace=False)
 |
 |      Plot the rotated mesh.
 |
 |      >>> pl = pyvista.Plotter()
 |      >>> _ = pl.add_mesh(rot)
 |      >>> _ = pl.add_mesh(mesh, style='wireframe', line_width=3)
 |      >>> _ = pl.add_axes_at_origin()
 |      >>> pl.show()
 |
 |  rotate_z(self, angle: float, point=(0.0, 0.0, 0.0), transform_all_input_vectors=False, inplace=False)
 |      Rotate mesh about the z-axis.
 |
 |      .. note::
 |          See also the notes at :func:`transform()
 |          <DataSetFilters.transform>` which is used by this filter
 |          under the hood.
 |
 |      Parameters
 |      ----------
 |      angle : float
 |          Angle in degrees to rotate about the z-axis.
 |
 |      point : list, optional
 |          Point to rotate about.  Defaults to origin ``(0.0, 0.0, 0.0)``.
 |
 |      transform_all_input_vectors : bool, optional
 |          When ``True``, all input vectors are
 |          transformed. Otherwise, only the points, normals and
 |          active vectors are transformed.
 |
 |      inplace : bool, optional
 |          Updates mesh in-place.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Rotated dataset.
 |
 |      Examples
 |      --------
 |      Rotate a mesh 30 degrees about the z-axis.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Cube()
 |      >>> rot = mesh.rotate_z(30, inplace=False)
 |
 |      Plot the rotated mesh.
 |
 |      >>> pl = pyvista.Plotter()
 |      >>> _ = pl.add_mesh(rot)
 |      >>> _ = pl.add_mesh(mesh, style='wireframe', line_width=3)
 |      >>> _ = pl.add_axes_at_origin()
 |      >>> pl.show()
 |
 |  scale(self, xyz: Union[float, int, numpy.number, list, tuple, numpy.ndarray], transform_all_input_vectors=False, inplace=False)
 |      Scale the mesh.
 |
 |      .. note::
 |          See also the notes at :func:`transform()
 |          <DataSetFilters.transform>` which is used by this filter
 |          under the hood.
 |
 |      Parameters
 |      ----------
 |      xyz : float or list or tuple or np.ndarray
 |          A scalar or length 3 list, tuple or array defining the scale
 |          factors along x, y, and z. If a scalar, the same uniform scale is
 |          used along all three axes.
 |
 |      transform_all_input_vectors : bool, optional
 |          When ``True``, all input vectors are
 |          transformed. Otherwise, only the points, normals and
 |          active vectors are transformed.
 |
 |      inplace : bool, optional
 |          Updates mesh in-place.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Scaled dataset.
 |
 |      Examples
 |      --------
 |      >>> import pyvista
 |      >>> from pyvista import examples
 |      >>> pl = pyvista.Plotter(shape=(1, 2))
 |      >>> pl.subplot(0, 0)
 |      >>> pl.show_axes()
 |      >>> _ = pl.show_grid()
 |      >>> mesh1 = examples.download_teapot()
 |      >>> _ = pl.add_mesh(mesh1)
 |      >>> pl.subplot(0, 1)
 |      >>> pl.show_axes()
 |      >>> _ = pl.show_grid()
 |      >>> mesh2 = mesh1.scale([10.0, 10.0, 10.0], inplace=False)
 |      >>> _ = pl.add_mesh(mesh2)
 |      >>> pl.show(cpos="xy")
 |
 |  set_active_scalars(self, name: Optional[str], preference='cell')
 |      Find the scalars by name and appropriately sets it as active.
 |
 |      To deactivate any active scalars, pass ``None`` as the ``name``.
 |
 |      Parameters
 |      ----------
 |      name : str or None
 |          Name of the scalars array to assign as active.  If
 |          ``None``, deactivates active scalars for both point and
 |          cell data.
 |
 |      preference : str, optional
 |          If there are two arrays of the same name associated with
 |          points or cells, it will prioritize an array matching this
 |          type.  Can be either ``'cell'`` or ``'point'``.
 |
 |      Returns
 |      -------
 |      pyvista.FieldAssociation
 |          Association of the scalars matching ``name``.
 |
 |      numpy.ndarray
 |          An array from the dataset matching ``name``.
 |
 |  set_active_tensors(self, name: Optional[str], preference='point')
 |      Find the tensors by name and appropriately sets it as active.
 |
 |      To deactivate any active tensors, pass ``None`` as the ``name``.
 |
 |      Parameters
 |      ----------
 |      name : str
 |          Name of the tensors array to assign as active.
 |
 |      preference : str, optional
 |          If there are two arrays of the same name associated with
 |          points, cells, or field data, it will prioritize an array
 |          matching this type.  Can be either ``'cell'``,
 |          ``'field'``, or ``'point'``.
 |
 |  set_active_vectors(self, name: Optional[str], preference='point')
 |      Find the vectors by name and appropriately sets it as active.
 |
 |      To deactivate any active vectors, pass ``None`` as the ``name``.
 |
 |      Parameters
 |      ----------
 |      name : str
 |          Name of the vectors array to assign as active.
 |
 |      preference : str, optional
 |          If there are two arrays of the same name associated with
 |          points, cells, or field data, it will prioritize an array
 |          matching this type.  Can be either ``'cell'``,
 |          ``'field'``, or ``'point'``.
 |
 |  translate(self, xyz: Union[list, tuple, numpy.ndarray], transform_all_input_vectors=False, inplace=False)
 |      Translate the mesh.
 |
 |      .. note::
 |          See also the notes at :func:`transform()
 |          <DataSetFilters.transform>` which is used by this filter
 |          under the hood.
 |
 |      Parameters
 |      ----------
 |      xyz : list or tuple or np.ndarray
 |          Length 3 list, tuple or array.
 |
 |      transform_all_input_vectors : bool, optional
 |          When ``True``, all input vectors are
 |          transformed. Otherwise, only the points, normals and
 |          active vectors are transformed.
 |
 |      inplace : bool, optional
 |          Updates mesh in-place.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Translated dataset.
 |
 |      Examples
 |      --------
 |      Create a sphere and translate it by ``(2, 1, 2)``.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Sphere()
 |      >>> mesh.center
 |      [0.0, 0.0, 0.0]
 |      >>> trans = mesh.translate((2, 1, 2), inplace=False)
 |      >>> trans.center
 |      [2.0, 1.0, 2.0]
 |
 |  ----------------------------------------------------------------------
 |  Readonly properties inherited from pyvista.core.dataset.DataSet:
 |
 |  active_normals
 |      Return the active normals as an array.
 |
 |      Returns
 |      -------
 |      pyvista_ndarray
 |          Active normals of this dataset.
 |
 |      Notes
 |      -----
 |      If both point and cell normals exist, this returns point
 |      normals by default.
 |
 |      Examples
 |      --------
 |      Compute normals on an example sphere mesh and return the
 |      active normals for the dataset.  Show that this is the same size
 |      as the number of points.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Sphere()
 |      >>> mesh = mesh.compute_normals()
 |      >>> normals = mesh.active_normals
 |      >>> normals.shape
 |      (842, 3)
 |      >>> mesh.n_points
 |      842
 |
 |  active_scalars
 |      Return the active scalars as an array.
 |
 |  active_scalars_info
 |      Return the active scalar's association and name.
 |
 |      Association refers to the data association (e.g. point, cell, or
 |      field) of the active scalars.
 |
 |      Returns
 |      -------
 |      ActiveArrayInfo
 |          The scalars info in an object with namedtuple semantics,
 |          with attributes ``association`` and ``name``.
 |
 |      Notes
 |      -----
 |      If both cell and point scalars are present and neither have
 |      been set active within at the dataset level, point scalars
 |      will be made active.
 |
 |      Examples
 |      --------
 |      Create a mesh, add scalars to the mesh, and return the active
 |      scalars info.  Note how when the scalars are added, they
 |      automatically become the active scalars.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Sphere()
 |      >>> mesh['Z Height'] = mesh.points[:, 2]
 |      >>> mesh.active_scalars_info
 |      ActiveArrayInfoTuple(association=<FieldAssociation.POINT: 0>, name='Z Height')
 |
 |  active_tensors
 |      Return the active tensors array.
 |
 |  active_tensors_info
 |      Return the active tensor's field and name: [field, name].
 |
 |  active_vectors
 |      Return the active vectors array.
 |
 |      Examples
 |      --------
 |      Create a mesh, compute the normals inplace, and return the
 |      normals vector array.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Sphere()
 |      >>> _ = mesh.compute_normals(inplace=True)
 |      >>> mesh.active_vectors  # doctest:+SKIP
 |      pyvista_ndarray([[-2.48721432e-10, -1.08815623e-09, -1.00000000e+00],
 |                       [-2.48721432e-10, -1.08815623e-09,  1.00000000e+00],
 |                       [-1.18888125e-01,  3.40539310e-03, -9.92901802e-01],
 |                       ...,
 |                       [-3.11940581e-01, -6.81432486e-02,  9.47654784e-01],
 |                       [-2.09880397e-01, -4.65070531e-02,  9.76620376e-01],
 |                       [-1.15582108e-01, -2.80492082e-02,  9.92901802e-01]],
 |                      dtype=float32)
 |
 |  active_vectors_info
 |      Return the active vector's association and name.
 |
 |      Association refers to the data association (e.g. point, cell, or
 |      field) of the active vectors.
 |
 |      Returns
 |      -------
 |      ActiveArrayInfo
 |          The vectors info in an object with namedtuple semantics,
 |          with attributes ``association`` and ``name``.
 |
 |      Notes
 |      -----
 |      If both cell and point vectors are present and neither have
 |      been set active within at the dataset level, point vectors
 |      will be made active.
 |
 |      Examples
 |      --------
 |      Create a mesh, compute the normals inplace, set the active
 |      vectors to the normals, and show that the active vectors are
 |      the ``'Normals'`` array associated with points.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Sphere()
 |      >>> _ = mesh.compute_normals(inplace=True)
 |      >>> mesh.active_vectors_name = 'Normals'
 |      >>> mesh.active_vectors_info
 |      ActiveArrayInfoTuple(association=<FieldAssociation.POINT: 0>, name='Normals')
 |
 |  area
 |      Return the mesh area if 2D.
 |
 |      This will return 0 for meshes with 3D cells.
 |
 |      Returns
 |      -------
 |      float
 |          Total area of the mesh.
 |
 |      Examples
 |      --------
 |      Get the area of a square of size 2x2.
 |      Note 5 points in each direction.
 |
 |      >>> import pyvista as pv
 |      >>> mesh = pv.UniformGrid(dimensions=(5, 5, 1))
 |      >>> mesh.area
 |      16.0
 |
 |      A mesh with 3D cells does not have an area.  To get
 |      the outer surface area, first extract the surface using
 |      :func:`pyvista.DataSetFilters.extract_surface`.
 |
 |      >>> mesh = pv.UniformGrid(dimensions=(5, 5, 5))
 |      >>> mesh.area
 |      0.0
 |
 |      Get the area of a sphere.
 |
 |      >>> mesh = pv.Sphere()
 |      >>> mesh.volume
 |      0.51825
 |
 |  array_names
 |      Return a list of array names for the dataset.
 |
 |      This makes sure to put the active scalars' name first in the list.
 |
 |      Examples
 |      --------
 |      Return the array names for a mesh.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Sphere()
 |      >>> mesh.point_data['my_array'] = range(mesh.n_points)
 |      >>> mesh.array_names
 |      ['my_array', 'Normals']
 |
 |  arrows
 |      Return a glyph representation of the active vector data as arrows.
 |
 |      Arrows will be located at the points of the mesh and
 |      their size will be dependent on the norm of the vector.
 |      Their direction will be the "direction" of the vector
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Active vectors represented as arrows.
 |
 |      Examples
 |      --------
 |      Create a mesh, compute the normals and set them active, and
 |      plot the active vectors.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Cube()
 |      >>> mesh_w_normals = mesh.compute_normals()
 |      >>> mesh_w_normals.active_vectors_name = 'Normals'
 |      >>> arrows = mesh_w_normals.arrows
 |      >>> arrows.plot(show_scalar_bar=False)
 |
 |  bounds
 |      Return the bounding box of this dataset.
 |
 |      The form is: ``(xmin, xmax, ymin, ymax, zmin, zmax)``.
 |
 |      Examples
 |      --------
 |      Create a cube and return the bounds of the mesh.
 |
 |      >>> import pyvista
 |      >>> cube = pyvista.Cube()
 |      >>> cube.bounds
 |      (-0.5, 0.5, -0.5, 0.5, -0.5, 0.5)
 |
 |  cell
 |      Return a list of cells.
 |
 |      Returns
 |      -------
 |      list[pyvista.Cell]
 |          A list of :class:`pyvista.Cell` objects.
 |
 |      Warnings
 |      --------
 |      For large meshes, the list can take some time to compute and you might
 |      prefer to use the :func:`DataSet.get_cell` method within a for-loop.
 |
 |      Examples
 |      --------
 |      Get the last cell of a dataset.
 |
 |      >>> from pyvista import examples
 |      >>> mesh = examples.load_hexbeam()
 |      >>> mesh.cell[-1] # doctest:+SKIP
 |      Type: CellType.HEXAHEDRON
 |      Linear: True
 |      Dimension: 3
 |      N Points: 8
 |      N Faces: 6
 |      N Edges: 12
 |      X Bounds: 5.000e-01, 1.000e+00
 |      Y Bounds: 5.000e-01, 1.000e+00
 |      Z Bounds: 4.500e+00, 5.000e+00
 |
 |      Get the point ids of the last cell
 |
 |      >>> mesh.cell[-1].point_ids
 |      [98, 62, 53, 80, 17, 13, 12, 15]
 |
 |      Get the points coordinates of the last cell
 |
 |      >>> mesh.cell[-1].points
 |      array([[0.5, 0.5, 4.5],
 |             [1. , 0.5, 4.5],
 |             [1. , 1. , 4.5],
 |             [0.5, 1. , 4.5],
 |             [0.5, 0.5, 5. ],
 |             [1. , 0.5, 5. ],
 |             [1. , 1. , 5. ],
 |             [0.5, 1. , 5. ]])
 |
 |      Get the point ids of the edges of the last cell.
 |      Note that the `edges` attributes returns a generator of
 |      `pyvista.Cell` objects.
 |
 |      >>> for e in mesh.cell[-1].edges:
 |      ...     print(e.point_ids)
 |      [98, 62]
 |      [62, 53]
 |      [80, 53]
 |      [98, 80]
 |      [17, 13]
 |      [13, 12]
 |      [15, 12]
 |      [17, 15]
 |      [98, 17]
 |      [62, 13]
 |      [80, 15]
 |      [53, 12]
 |
 |      Get the point ids of the faces of the last cell.
 |
 |      >>> from pyvista.examples.cells import Tetrahedron
 |      >>> mesh = Tetrahedron()
 |      >>> cell = mesh.cell[-1]
 |      >>> for face in cell.faces:
 |      ...     print(face.point_ids)
 |      [0, 1, 3]
 |      [1, 2, 3]
 |      [2, 0, 3]
 |      [0, 2, 1]
 |
 |  cell_data
 |      Return vtkCellData as DataSetAttributes.
 |
 |      Examples
 |      --------
 |      Add cell arrays to a mesh and list the available ``cell_data``.
 |
 |      >>> import pyvista
 |      >>> import numpy as np
 |      >>> mesh = pyvista.Cube()
 |      >>> mesh.clear_data()
 |      >>> mesh.cell_data['my_array'] = np.random.random(mesh.n_cells)
 |      >>> mesh.cell_data['my_other_array'] = np.arange(mesh.n_cells)
 |      >>> mesh.cell_data
 |      pyvista DataSetAttributes
 |      Association     : CELL
 |      Active Scalars  : my_array
 |      Active Vectors  : None
 |      Active Texture  : None
 |      Active Normals  : None
 |      Contains arrays :
 |          my_array                float64    (6,)                 SCALARS
 |          my_other_array          int64      (6,)
 |
 |      Access an array from ``cell_data``.
 |
 |      >>> mesh.cell_data['my_other_array']
 |      pyvista_ndarray([0, 1, 2, 3, 4, 5])
 |
 |      Or access it directly from the mesh.
 |
 |      >>> mesh['my_array'].shape
 |      (6,)
 |
 |  center
 |      Return the center of the bounding box.
 |
 |      Examples
 |      --------
 |      Get the center of a mesh.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Sphere(center=(1, 2, 0))
 |      >>> mesh.center
 |      [1.0, 2.0, 0.0]
 |
 |  length
 |      Return the length of the diagonal of the bounding box.
 |
 |      Examples
 |      --------
 |      Get the length of the bounding box of a cube.  This should
 |      match ``3**(1/2)`` since it is the diagonal of a cube that is
 |      ``1 x 1 x 1``.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Cube()
 |      >>> mesh.length
 |      1.7320508075688772
 |
 |  n_arrays
 |      Return the number of arrays present in the dataset.
 |
 |  n_cells
 |      Return the number of cells in the entire dataset.
 |
 |      Notes
 |      -----
 |      This is identical to :attr:`n_faces <pyvista.PolyData.n_faces>`
 |      in :class:`pyvista.PolyData`.
 |
 |      Examples
 |      --------
 |      Create a mesh and return the number of cells in the
 |      mesh.
 |
 |      >>> import pyvista
 |      >>> cube = pyvista.Cube()
 |      >>> cube.n_cells
 |      6
 |
 |  n_points
 |      Return the number of points in the entire dataset.
 |
 |      Examples
 |      --------
 |      Create a mesh and return the number of points in the
 |      mesh.
 |
 |      >>> import pyvista
 |      >>> cube = pyvista.Cube()
 |      >>> cube.n_points
 |      8
 |
 |  number_of_cells
 |      Return the number of cells.
 |
 |  number_of_points
 |      Return the number of points.
 |
 |  point_data
 |      Return vtkPointData as DataSetAttributes.
 |
 |      Examples
 |      --------
 |      Add point arrays to a mesh and list the available ``point_data``.
 |
 |      >>> import pyvista
 |      >>> import numpy as np
 |      >>> mesh = pyvista.Cube()
 |      >>> mesh.clear_data()
 |      >>> mesh.point_data['my_array'] = np.random.random(mesh.n_points)
 |      >>> mesh.point_data['my_other_array'] = np.arange(mesh.n_points)
 |      >>> mesh.point_data
 |      pyvista DataSetAttributes
 |      Association     : POINT
 |      Active Scalars  : my_array
 |      Active Vectors  : None
 |      Active Texture  : None
 |      Active Normals  : None
 |      Contains arrays :
 |          my_array                float64    (8,)                 SCALARS
 |          my_other_array          int64      (8,)
 |
 |      Access an array from ``point_data``.
 |
 |      >>> mesh.point_data['my_other_array']
 |      pyvista_ndarray([0, 1, 2, 3, 4, 5, 6, 7])
 |
 |      Or access it directly from the mesh.
 |
 |      >>> mesh['my_array'].shape
 |      (8,)
 |
 |  textures
 |      Return a dictionary to hold compatible ``vtk.vtkTexture`` objects.
 |
 |      When casting back to a VTK dataset or filtering this dataset,
 |      these textures will not be passed.
 |
 |      Examples
 |      --------
 |      Return the active texture datasets from the globe example.
 |
 |      >>> from pyvista import examples
 |      >>> globe = examples.load_globe()
 |      >>> globe.textures
 |      {'2k_earth_daymap': ...}
 |
 |  volume
 |      Return the mesh volume.
 |
 |      This will return 0 for meshes with 2D cells.
 |
 |      Returns
 |      -------
 |      float
 |          Total volume of the mesh.
 |
 |      Examples
 |      --------
 |      Get the volume of a cube of size 4x4x4.
 |      Note that there are 5 points in each direction.
 |
 |      >>> import pyvista as pv
 |      >>> mesh = pv.UniformGrid(dimensions=(5, 5, 5))
 |      >>> mesh.volume
 |      64.0
 |
 |      A mesh with 2D cells has no volume.
 |
 |      >>> mesh = pv.UniformGrid(dimensions=(5, 5, 1))
 |      >>> mesh.volume
 |      0.0
 |
 |      :class:`pyvista.PolyData` is special as a 2D surface can
 |      enclose a 3D volume.
 |
 |      >>> mesh = pv.Sphere()
 |      >>> mesh.volume
 |      0.51825
 |
 |  ----------------------------------------------------------------------
 |  Data descriptors inherited from pyvista.core.dataset.DataSet:
 |
 |  active_scalars_name
 |      Return the name of the active scalars.
 |
 |      Examples
 |      --------
 |      Create a mesh, add scalars to the mesh, and return the name of
 |      the active scalars.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Sphere()
 |      >>> mesh['Z Height'] = mesh.points[:, 2]
 |      >>> mesh.active_scalars_name
 |      'Z Height'
 |
 |  active_t_coords
 |      Return or set the active texture coordinates on the points.
 |
 |      Examples
 |      --------
 |      Return the active texture coordinates from the globe example.
 |
 |      >>> from pyvista import examples
 |      >>> globe = examples.load_globe()
 |      >>> globe.active_t_coords
 |      pyvista_ndarray([[0.        , 0.        ],
 |                       [0.        , 0.07142857],
 |                       [0.        , 0.14285714],
 |                       ...,
 |                       [1.        , 0.85714286],
 |                       [1.        , 0.92857143],
 |                       [1.        , 1.        ]])
 |
 |  active_tensors_name
 |      Return the name of the active tensor array.
 |
 |  active_vectors_name
 |      Return the name of the active vectors array.
 |
 |      Examples
 |      --------
 |      Create a mesh, compute the normals, set them as active, and
 |      return the name of the active vectors.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Sphere()
 |      >>> mesh_w_normals = mesh.compute_normals()
 |      >>> mesh_w_normals.active_vectors_name = 'Normals'
 |      >>> mesh_w_normals.active_vectors_name
 |      'Normals'
 |
 |  ----------------------------------------------------------------------
 |  Methods inherited from pyvista.core.filters.uniform_grid.UniformGridFilters:
 |
 |  extract_subset(self, voi, rate=(1, 1, 1), boundary=False, progress_bar=False)
 |      Select piece (e.g., volume of interest).
 |
 |      To use this filter set the VOI ivar which are i-j-k min/max indices
 |      that specify a rectangular region in the data. (Note that these are
 |      0-offset.) You can also specify a sampling rate to subsample the
 |      data.
 |
 |      Typical applications of this filter are to extract a slice from a
 |      volume for image processing, subsampling large volumes to reduce data
 |      size, or extracting regions of a volume with interesting data.
 |
 |      Parameters
 |      ----------
 |      voi : tuple(int)
 |          Length 6 iterable of ints: ``(xmin, xmax, ymin, ymax, zmin, zmax)``.
 |          These bounds specify the volume of interest in i-j-k min/max
 |          indices.
 |
 |      rate : tuple(int), optional
 |          Length 3 iterable of ints: ``(xrate, yrate, zrate)``.
 |          Default: ``(1, 1, 1)``.
 |
 |      boundary : bool, optional
 |          Control whether to enforce that the "boundary" of the grid
 |          is output in the subsampling process. This only has effect
 |          when the rate in any direction is not equal to 1. When
 |          this is enabled, the subsampling will always include the
 |          boundary of the grid even though the sample rate is not an
 |          even multiple of the grid dimensions. By default this is
 |          disabled.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.UniformGrid
 |          UniformGrid subset.
 |
 |  fft(self, output_scalars_name=None, progress_bar=False)
 |      Apply a fast Fourier transform (FFT) to the active scalars.
 |
 |      The input can be real or complex data, but the output is always
 |      :attr:`numpy.complex128`. The filter is fastest for images that have
 |      power of two sizes.
 |
 |      The filter uses a butterfly diagram for each prime factor of the
 |      dimension. This makes images with prime number dimensions (i.e. 17x17)
 |      much slower to compute. FFTs of multidimensional meshes (i.e volumes)
 |      are decomposed so that each axis executes serially.
 |
 |      The frequencies of the output assume standard order: along each axis
 |      first positive frequencies are assumed from 0 to the maximum, then
 |      negative frequencies are listed from the largest absolute value to
 |      smallest. This implies that the corners of the grid correspond to low
 |      frequencies, while the center of the grid corresponds to high
 |      frequencies.
 |
 |      Parameters
 |      ----------
 |      output_scalars_name : str, optional
 |          The name of the output scalars. By default, this is the same as the
 |          active scalars of the dataset.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.UniformGrid
 |          :class:`pyvista.UniformGrid` with applied FFT.
 |
 |      See Also
 |      --------
 |      rfft: The reverse transform.
 |      low_pass: Low-pass filtering of FFT output.
 |      high_pass: High-pass filtering of FFT output.
 |
 |      Examples
 |      --------
 |      Apply FFT to an example image.
 |
 |      >>> from pyvista import examples
 |      >>> image = examples.download_moonlanding_image()
 |      >>> fft_image = image.fft()
 |      >>> fft_image.point_data  # doctest:+SKIP
 |      pyvista DataSetAttributes
 |      Association     : POINT
 |      Active Scalars  : PNGImage
 |      Active Vectors  : None
 |      Active Texture  : None
 |      Active Normals  : None
 |      Contains arrays :
 |      PNGImage                complex128 (298620,)          SCALARS
 |
 |      See :ref:`image_fft_example` for a full example using this filter.
 |
 |  gaussian_smooth(self, radius_factor=1.5, std_dev=2.0, scalars=None, progress_bar=False)
 |      Smooth the data with a Gaussian kernel.
 |
 |      Parameters
 |      ----------
 |      radius_factor : float or iterable, optional
 |          Unitless factor to limit the extent of the kernel.
 |
 |      std_dev : float or iterable, optional
 |          Standard deviation of the kernel in pixel units.
 |
 |      scalars : str, optional
 |          Name of scalars to process. Defaults to currently active scalars.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.UniformGrid
 |          Uniform grid with smoothed scalars.
 |
 |      Notes
 |      -----
 |      This filter only supports point data. Consider converting any cell
 |      data to point data using the :func:`DataSet.cell_data_to_point_data`
 |      filter to convert any cell data to point data.
 |
 |      Examples
 |      --------
 |      First, create sample data to smooth. Here, we use
 |      :func:`pyvista.perlin_noise() <pyvista.utilities.common.perlin_noise>`
 |      to create meaningful data.
 |
 |      >>> import numpy as np
 |      >>> import pyvista
 |      >>> noise = pyvista.perlin_noise(0.1, (2, 5, 8), (0, 0, 0))
 |      >>> grid = pyvista.sample_function(noise, [0, 1, 0, 1, 0, 1], dim=(20, 20, 20))
 |      >>> grid.plot(show_scalar_bar=False)
 |
 |      Next, smooth the sample data.
 |
 |      >>> smoothed = grid.gaussian_smooth()
 |      >>> smoothed.plot(show_scalar_bar=False)
 |
 |      See :ref:`gaussian_smoothing_example` for a full example using this filter.
 |
 |  high_pass(self, x_cutoff, y_cutoff, z_cutoff, order=1, output_scalars_name=None, progress_bar=False)
 |      Perform a Butterworth high pass filter in the frequency domain.
 |
 |      This filter requires that the :class:`UniformGrid` have a complex point
 |      scalars, usually generated after the :class:`UniformGrid` has been
 |      converted to the frequency domain by a :func:`UniformGridFilters.fft`
 |      filter.
 |
 |      A :func:`UniformGridFilters.rfft` filter can be used to convert the
 |      output back into the spatial domain. This filter attenuates low
 |      frequency components.  Input and output are complex arrays with
 |      datatype :attr:`numpy.complex128`.
 |
 |      The frequencies of the input assume standard order: along each axis
 |      first positive frequencies are assumed from 0 to the maximum, then
 |      negative frequencies are listed from the largest absolute value to
 |      smallest. This implies that the corners of the grid correspond to low
 |      frequencies, while the center of the grid corresponds to high
 |      frequencies.
 |
 |      Parameters
 |      ----------
 |      x_cutoff : double
 |          The cutoff frequency for the x axis.
 |
 |      y_cutoff : double
 |          The cutoff frequency for the y axis.
 |
 |      z_cutoff : double
 |          The cutoff frequency for the z axis.
 |
 |      order : int, optional
 |          The order of the cutoff curve. Given from the equation
 |          ``1/(1 + (cutoff/freq(i, j))**(2*order))``.
 |
 |      output_scalars_name : str, optional
 |          The name of the output scalars. By default, this is the same as the
 |          active scalars of the dataset.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.UniformGrid
 |          :class:`pyvista.UniformGrid` with the applied high pass filter.
 |
 |      See Also
 |      --------
 |      fft: Direct fast Fourier transform.
 |      rfft: Reverse fast Fourier transform.
 |      low_pass: Low-pass filtering of FFT output.
 |
 |      Examples
 |      --------
 |      See :ref:`image_fft_perlin_example` for a full example using this filter.
 |
 |  image_dilate_erode(self, dilate_value=1, erode_value=0, kernel_size=(3, 3, 3), scalars=None, progress_bar=False)
 |      Dilates one value and erodes another.
 |
 |      ``image_dilate_erode`` will dilate one value and erode another. It uses
 |      an elliptical footprint, and only erodes/dilates on the boundary of the
 |      two values. The filter is restricted to the X, Y, and Z axes for now.
 |      It can degenerate to a 2 or 1-dimensional filter by setting the kernel
 |      size to 1 for a specific axis.
 |
 |      Parameters
 |      ----------
 |      dilate_value : int or float, optional
 |          Dilate value in the dataset. Default: ``1``.
 |
 |      erode_value : int or float, optional
 |          Erode value in the dataset. Default: ``0``.
 |
 |      kernel_size : list(int) or tuple(int), optional
 |          Length 3 iterable of ints: ``(xsize, ysize, zsize)``.
 |          Determines the size (and center) of the kernel.
 |          Default: ``(3, 3, 3)``.
 |
 |      scalars : str, optional
 |          Name of scalars to process. Defaults to currently active scalars.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress. Default ``False``.
 |
 |      Returns
 |      -------
 |      pyvista.UniformGrid
 |          Dataset that has been dilated/eroded on the boundary of the specified scalars.
 |
 |      Notes
 |      -----
 |      This filter only supports point data. Consider converting any cell
 |      data to point data using the :func:`DataSet.cell_data_to_point_data`
 |      filter to convert ny cell data to point data.
 |
 |      Examples
 |      --------
 |      Demonstrate image dilate/erode on an example dataset. First, plot
 |      the example dataset with the active scalars.
 |
 |      >>> from pyvista import examples
 |      >>> uni = examples.load_uniform()
 |      >>> uni.plot()
 |
 |      Now, plot the image threshold with ``threshold=[400, 600]``. Note how
 |      values within the threshold are 1 and outside are 0.
 |
 |      >>> ithresh = uni.image_threshold([400, 600])
 |      >>> ithresh.plot()
 |
 |      Note how there is a hole in the thresholded image. Apply a dilation/
 |      erosion filter with a large kernel to fill that hole in.
 |
 |      >>> idilate = ithresh.image_dilate_erode(kernel_size=[5, 5, 5])
 |      >>> idilate.plot()
 |
 |  image_threshold(self, threshold, in_value=1, out_value=0, scalars=None, preference='point', progress_bar=False)
 |      Apply a threshold to scalar values in a uniform grid.
 |
 |      If a single value is given for threshold, scalar values above or equal
 |      to the threshold are ``'in'`` and scalar values below the threshold are ``'out'``.
 |      If two values are given for threshold (sequence) then values equal to
 |      or between the two values are ``'in'`` and values outside the range are ``'out'``.
 |
 |      If ``None`` is given for ``in_value``, scalars that are ``'in'`` will not be replaced.
 |      If ``None`` is given for ``out_value``, scalars that are ``'out'`` will not be replaced.
 |
 |      Warning: applying this filter to cell data will send the output to a
 |      new point array with the same name, overwriting any existing point data
 |      array with the same name.
 |
 |      Parameters
 |      ----------
 |      threshold : float or sequence
 |          Single value or (min, max) to be used for the data threshold.  If
 |          a sequence, then length must be 2. Threshold(s) for deciding which
 |          cells/points are ``'in'`` or ``'out'`` based on scalar data.
 |
 |      in_value : float or int or None, optional
 |          Scalars that match the threshold criteria for ``'in'`` will be replaced with this.
 |          Default is 1.
 |
 |      out_value : float or int or None, optional
 |          Scalars that match the threshold criteria for ``'out'`` will be replaced with this.
 |          Default is 0.
 |
 |      scalars : str, optional
 |          Name of scalars to process. Defaults to currently active scalars.
 |
 |      preference : str, optional
 |          When scalars is specified, this is the preferred array
 |          type to search for in the dataset.  Must be either
 |          ``'point'`` or ``'cell'``.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress. Default ``False``.
 |
 |      Returns
 |      -------
 |      pyvista.UniformGrid
 |          Dataset with the specified scalars thresholded.
 |
 |      Examples
 |      --------
 |      Demonstrate image threshold on an example dataset. First, plot
 |      the example dataset with the active scalars.
 |
 |      >>> from pyvista import examples
 |      >>> uni = examples.load_uniform()
 |      >>> uni.plot()
 |
 |      Now, plot the image threshold with ``threshold=100``. Note how
 |      values above the threshold are 1 and below are 0.
 |
 |      >>> ithresh = uni.image_threshold(100)
 |      >>> ithresh.plot()
 |
 |  low_pass(self, x_cutoff, y_cutoff, z_cutoff, order=1, output_scalars_name=None, progress_bar=False)
 |      Perform a Butterworth low pass filter in the frequency domain.
 |
 |      This filter requires that the :class:`UniformGrid` have a complex point
 |      scalars, usually generated after the :class:`UniformGrid` has been
 |      converted to the frequency domain by a :func:`UniformGridFilters.fft`
 |      filter.
 |
 |      A :func:`UniformGridFilters.rfft` filter can be used to convert the
 |      output back into the spatial domain. This filter attenuates high
 |      frequency components.  Input and output are complex arrays with
 |      datatype :attr:`numpy.complex128`.
 |
 |      The frequencies of the input assume standard order: along each axis
 |      first positive frequencies are assumed from 0 to the maximum, then
 |      negative frequencies are listed from the largest absolute value to
 |      smallest. This implies that the corners of the grid correspond to low
 |      frequencies, while the center of the grid corresponds to high
 |      frequencies.
 |
 |      Parameters
 |      ----------
 |      x_cutoff : double
 |          The cutoff frequency for the x axis.
 |
 |      y_cutoff : double
 |          The cutoff frequency for the y axis.
 |
 |      z_cutoff : double
 |          The cutoff frequency for the z axis.
 |
 |      order : int, optional
 |          The order of the cutoff curve. Given from the equation
 |          ``1 + (cutoff/freq(i, j))**(2*order)``.
 |
 |      output_scalars_name : str, optional
 |          The name of the output scalars. By default, this is the same as the
 |          active scalars of the dataset.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.UniformGrid
 |          :class:`pyvista.UniformGrid` with the applied low pass filter.
 |
 |      See Also
 |      --------
 |      fft: Direct fast Fourier transform.
 |      rfft: Reverse fast Fourier transform.
 |      high_pass: High-pass filtering of FFT output.
 |
 |      Examples
 |      --------
 |      See :ref:`image_fft_perlin_example` for a full example using this filter.
 |
 |  median_smooth(self, kernel_size=(3, 3, 3), scalars=None, preference='point', progress_bar=False)
 |      Smooth data using a median filter.
 |
 |      The Median filter that replaces each pixel with the median value from a
 |      rectangular neighborhood around that pixel. Neighborhoods can be no
 |      more than 3 dimensional. Setting one axis of the neighborhood
 |      kernelSize to 1 changes the filter into a 2D median.
 |
 |      See `vtkImageMedian3D
 |      <https://vtk.org/doc/nightly/html/classvtkImageMedian3D.html#details>`_
 |      for more details.
 |
 |      Parameters
 |      ----------
 |      kernel_size : list(int) or tuple(int), optional
 |          Length 3 list or tuple of ints : ``(x_size, y_size, z_size)``
 |          Size of the kernel in each dimension (units of voxels). Default is
 |          a 3D median filter. If you want to do a 2D median filter, set the
 |          size to 1 in the dimension you don't want to filter over.
 |
 |      scalars : str, optional
 |          Name of scalars to process. Defaults to currently active scalars.
 |
 |      preference : str, optional
 |          When scalars is specified, this is the preferred array
 |          type to search for in the dataset.  Must be either
 |          ``'point'`` or ``'cell'``.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.UniformGrid
 |          Uniform grid with smoothed scalars.
 |
 |      Warnings
 |      --------
 |      Applying this filter to cell data will send the output to a new point
 |      array with the same name, overwriting any existing point data array
 |      with the same name.
 |
 |      Examples
 |      --------
 |      First, create sample data to smooth. Here, we use
 |      :func:`pyvista.perlin_noise() <pyvista.utilities.common.perlin_noise>`
 |      to create meaningful data.
 |
 |      >>> import numpy as np
 |      >>> import pyvista
 |      >>> noise = pyvista.perlin_noise(0.1, (2, 5, 8), (0, 0, 0))
 |      >>> grid = pyvista.sample_function(noise, [0, 1, 0, 1, 0, 1], dim=(20, 20, 20))
 |      >>> grid.plot(show_scalar_bar=False)
 |
 |      Next, smooth the sample data.
 |
 |      >>> smoothed = grid.median_smooth(kernel_size=(10, 10, 10))
 |      >>> smoothed.plot(show_scalar_bar=False)
 |
 |  rfft(self, output_scalars_name=None, progress_bar=False)
 |      Apply a reverse fast Fourier transform (RFFT) to the active scalars.
 |
 |      The input can be real or complex data, but the output is always
 |      :attr:`numpy.complex128`. The filter is fastest for images that have power
 |      of two sizes.
 |
 |      The filter uses a butterfly diagram for each prime factor of the
 |      dimension. This makes images with prime number dimensions (i.e. 17x17)
 |      much slower to compute. FFTs of multidimensional meshes (i.e volumes)
 |      are decomposed so that each axis executes serially.
 |
 |      The frequencies of the input assume standard order: along each axis
 |      first positive frequencies are assumed from 0 to the maximum, then
 |      negative frequencies are listed from the largest absolute value to
 |      smallest. This implies that the corners of the grid correspond to low
 |      frequencies, while the center of the grid corresponds to high
 |      frequencies.
 |
 |      Parameters
 |      ----------
 |      output_scalars_name : str, optional
 |          The name of the output scalars. By default, this is the same as the
 |          active scalars of the dataset.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.UniformGrid
 |          :class:`pyvista.UniformGrid` with the applied reverse FFT.
 |
 |      See Also
 |      --------
 |      fft: The direct transform.
 |      low_pass: Low-pass filtering of FFT output.
 |      high_pass: High-pass filtering of FFT output.
 |
 |      Examples
 |      --------
 |      Apply reverse FFT to an example image.
 |
 |      >>> from pyvista import examples
 |      >>> image = examples.download_moonlanding_image()
 |      >>> fft_image = image.fft()
 |      >>> image_again = fft_image.rfft()
 |      >>> image_again.point_data  # doctest:+SKIP
 |      pyvista DataSetAttributes
 |      Association     : POINT
 |      Active Scalars  : PNGImage
 |      Active Vectors  : None
 |      Active Texture  : None
 |      Active Normals  : None
 |      Contains arrays :
 |          PNGImage                complex128 (298620,)            SCALARS
 |
 |      See :ref:`image_fft_example` for a full example using this filter.
 |
 |  ----------------------------------------------------------------------
 |  Methods inherited from pyvista.core.filters.data_set.DataSetFilters:
 |
 |  __add__(self, dataset)
 |      Combine this mesh with another into a :class:`pyvista.UnstructuredGrid`.
 |
 |  __iadd__(self, dataset)
 |      Merge another mesh into this one if possible.
 |
 |      "If possible" means that ``self`` is a :class:`pyvista.UnstructuredGrid`.
 |      Otherwise we have to return a new object, and the attempted in-place
 |      merge will raise.
 |
 |  cell_centers(self, vertex=True, progress_bar=False)
 |      Generate points at the center of the cells in this dataset.
 |
 |      These points can be used for placing glyphs or vectors.
 |
 |      Parameters
 |      ----------
 |      vertex : bool, default: True
 |          Enable or disable the generation of vertex cells.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Polydata where the points are the cell centers of the
 |          original dataset.
 |
 |      Examples
 |      --------
 |      >>> import pyvista
 |      >>> mesh = pyvista.Plane()
 |      >>> mesh.point_data.clear()
 |      >>> centers = mesh.cell_centers()
 |      >>> pl = pyvista.Plotter()
 |      >>> actor = pl.add_mesh(mesh, show_edges=True)
 |      >>> actor = pl.add_points(centers, render_points_as_spheres=True,
 |      ...                       color='red', point_size=20)
 |      >>> pl.show()
 |
 |      See :ref:`cell_centers_example` for more examples using this filter.
 |
 |  cell_data_to_point_data(self, pass_cell_data=False, progress_bar=False)
 |      Transform cell data into point data.
 |
 |      Point data are specified per node and cell data specified
 |      within cells.  Optionally, the input point data can be passed
 |      through to the output.
 |
 |      The method of transformation is based on averaging the data
 |      values of all cells using a particular point. Optionally, the
 |      input cell data can be passed through to the output as well.
 |
 |      See also :func:`pyvista.DataSetFilters.point_data_to_cell_data`.
 |
 |      Parameters
 |      ----------
 |      pass_cell_data : bool, optional
 |          If enabled, pass the input cell data through to the output.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Dataset with the point data transformed into cell data.
 |          Return type matches input.
 |
 |      Examples
 |      --------
 |      First compute the face area of the example airplane mesh and
 |      show the cell values.  This is to show discrete cell data.
 |
 |      >>> from pyvista import examples
 |      >>> surf = examples.load_airplane()
 |      >>> surf = surf.compute_cell_sizes(length=False, volume=False)
 |      >>> surf.plot(scalars='Area')
 |
 |      These cell scalars can be applied to individual points to
 |      effectively smooth out the cell data onto the points.
 |
 |      >>> from pyvista import examples
 |      >>> surf = examples.load_airplane()
 |      >>> surf = surf.compute_cell_sizes(length=False, volume=False)
 |      >>> surf = surf.cell_data_to_point_data()
 |      >>> surf.plot(scalars='Area')
 |
 |  clip(self, normal='x', origin=None, invert=True, value=0.0, inplace=False, return_clipped=False, progress_bar=False, crinkle=False)
 |      Clip a dataset by a plane by specifying the origin and normal.
 |
 |      If no parameters are given the clip will occur in the center
 |      of that dataset.
 |
 |      Parameters
 |      ----------
 |      normal : tuple(float) or str, default: 'x'
 |          Length 3 tuple for the normal vector direction. Can also
 |          be specified as a string conventional direction such as
 |          ``'x'`` for ``(1,0,0)`` or ``'-x'`` for ``(-1,0,0)``, etc.
 |
 |      origin : tuple(float), optional
 |          The center ``(x,y,z)`` coordinate of the plane on which the clip
 |          occurs. The default is the center of the dataset.
 |
 |      invert : bool, optional
 |          Flag on whether to flip/invert the clip.
 |
 |      value : float, optional
 |          Set the clipping value along the normal direction.
 |          The default value is 0.0.
 |
 |      inplace : bool, optional
 |          Updates mesh in-place.
 |
 |      return_clipped : bool, optional
 |          Return both unclipped and clipped parts of the dataset.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      crinkle : bool, optional
 |          Crinkle the clip by extracting the entire cells along the
 |          clip. This adds the ``"cell_ids"`` array to the ``cell_data``
 |          attribute that tracks the original cell IDs of the original
 |          dataset.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData or tuple(pyvista.PolyData)
 |          Clipped mesh when ``return_clipped=False``,
 |          otherwise a tuple containing the unclipped and clipped datasets.
 |
 |      Examples
 |      --------
 |      Clip a cube along the +X direction.  ``triangulate`` is used as
 |      the cube is initially composed of quadrilateral faces and
 |      subdivide only works on triangles.
 |
 |      >>> import pyvista as pv
 |      >>> cube = pv.Cube().triangulate().subdivide(3)
 |      >>> clipped_cube = cube.clip()
 |      >>> clipped_cube.plot()
 |
 |      Clip a cube in the +Z direction.  This leaves half a cube
 |      below the XY plane.
 |
 |      >>> import pyvista as pv
 |      >>> cube = pv.Cube().triangulate().subdivide(3)
 |      >>> clipped_cube = cube.clip('z')
 |      >>> clipped_cube.plot()
 |
 |      See :ref:`clip_with_surface_example` for more examples using this filter.
 |
 |  clip_box(self, bounds=None, invert=True, factor=0.35, progress_bar=False, merge_points=True, crinkle=False)
 |      Clip a dataset by a bounding box defined by the bounds.
 |
 |      If no bounds are given, a corner of the dataset bounds will be removed.
 |
 |      Parameters
 |      ----------
 |      bounds : tuple(float), optional
 |          Length 6 sequence of floats: (xmin, xmax, ymin, ymax, zmin, zmax).
 |          Length 3 sequence of floats: distances from the min coordinate of
 |          of the input mesh. Single float value: uniform distance from the
 |          min coordinate. Length 12 sequence of length 3 sequence of floats:
 |          a plane collection (normal, center, ...).
 |          :class:`pyvista.PolyData`: if a poly mesh is passed that represents
 |          a box with 6 faces that all form a standard box, then planes will
 |          be extracted from the box to define the clipping region.
 |
 |      invert : bool, optional
 |          Flag on whether to flip/invert the clip.
 |
 |      factor : float, optional
 |          If bounds are not given this is the factor along each axis to
 |          extract the default box.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      merge_points : bool, optional
 |          If ``True`` (default), coinciding points of independently
 |          defined mesh elements will be merged.
 |
 |      crinkle : bool, optional
 |          Crinkle the clip by extracting the entire cells along the
 |          clip. This adds the ``"cell_ids"`` array to the ``cell_data``
 |          attribute that tracks the original cell IDs of the original
 |          dataset.
 |
 |      Returns
 |      -------
 |      pyvista.UnstructuredGrid
 |          Clipped dataset.
 |
 |      Examples
 |      --------
 |      Clip a corner of a cube.  The bounds of a cube are normally
 |      ``[-0.5, 0.5, -0.5, 0.5, -0.5, 0.5]``, and this removes 1/8 of
 |      the cube's surface.
 |
 |      >>> import pyvista as pv
 |      >>> cube = pv.Cube().triangulate().subdivide(3)
 |      >>> clipped_cube = cube.clip_box([0, 1, 0, 1, 0, 1])
 |      >>> clipped_cube.plot()
 |
 |      See :ref:`clip_with_plane_box_example` for more examples using this filter.
 |
 |  clip_scalar(self, scalars=None, invert=True, value=0.0, inplace=False, progress_bar=False, both=False)
 |      Clip a dataset by a scalar.
 |
 |      Parameters
 |      ----------
 |      scalars : str, optional
 |          Name of scalars to clip on.  Defaults to currently active scalars.
 |
 |      invert : bool, optional
 |          Flag on whether to flip/invert the clip.  When ``True``,
 |          only the mesh below ``value`` will be kept.  When
 |          ``False``, only values above ``value`` will be kept.
 |
 |      value : float, optional
 |          Set the clipping value.  The default value is 0.0.
 |
 |      inplace : bool, optional
 |          Update mesh in-place.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      both : bool, optional
 |          If ``True``, also returns the complementary clipped mesh.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData or tuple
 |          Clipped dataset if ``both=False``.  If ``both=True`` then
 |          returns a tuple of both clipped datasets.
 |
 |      Examples
 |      --------
 |      Remove the part of the mesh with "sample_point_scalars" above 100.
 |
 |      >>> import pyvista as pv
 |      >>> from pyvista import examples
 |      >>> dataset = examples.load_hexbeam()
 |      >>> clipped = dataset.clip_scalar(scalars="sample_point_scalars", value=100)
 |      >>> clipped.plot()
 |
 |      Get clipped meshes corresponding to the portions of the mesh above and below 100.
 |
 |      >>> import pyvista as pv
 |      >>> from pyvista import examples
 |      >>> dataset = examples.load_hexbeam()
 |      >>> _below, _above = dataset.clip_scalar(scalars="sample_point_scalars", value=100, both=True)
 |
 |      Remove the part of the mesh with "sample_point_scalars" below 100.
 |
 |      >>> import pyvista as pv
 |      >>> from pyvista import examples
 |      >>> dataset = examples.load_hexbeam()
 |      >>> clipped = dataset.clip_scalar(scalars="sample_point_scalars", value=100, invert=False)
 |      >>> clipped.plot()
 |
 |  clip_surface(self, surface, invert=True, value=0.0, compute_distance=False, progress_bar=False, crinkle=False)
 |      Clip any mesh type using a :class:`pyvista.PolyData` surface mesh.
 |
 |      This will return a :class:`pyvista.UnstructuredGrid` of the clipped
 |      mesh. Geometry of the input dataset will be preserved where possible.
 |      Geometries near the clip intersection will be triangulated/tessellated.
 |
 |      Parameters
 |      ----------
 |      surface : pyvista.PolyData
 |          The ``PolyData`` surface mesh to use as a clipping
 |          function.  If this input mesh is not a :class`pyvista.PolyData`,
 |          the external surface will be extracted.
 |
 |      invert : bool, optional
 |          Flag on whether to flip/invert the clip.
 |
 |      value : float, optional
 |          Set the clipping value of the implicit function (if
 |          clipping with implicit function) or scalar value (if
 |          clipping with scalars).  The default value is 0.0.
 |
 |      compute_distance : bool, optional
 |          Compute the implicit distance from the mesh onto the input
 |          dataset.  A new array called ``'implicit_distance'`` will
 |          be added to the output clipped mesh.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      crinkle : bool, optional
 |          Crinkle the clip by extracting the entire cells along the
 |          clip. This adds the ``"cell_ids"`` array to the ``cell_data``
 |          attribute that tracks the original cell IDs of the original
 |          dataset.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Clipped surface.
 |
 |      Examples
 |      --------
 |      Clip a cube with a sphere.
 |
 |      >>> import pyvista
 |      >>> sphere = pyvista.Sphere(center=(-0.4, -0.4, -0.4))
 |      >>> cube = pyvista.Cube().triangulate().subdivide(3)
 |      >>> clipped = cube.clip_surface(sphere)
 |      >>> clipped.plot(show_edges=True, cpos='xy', line_width=3)
 |
 |      See :ref:`clip_with_surface_example` for more examples using
 |      this filter.
 |
 |  compute_cell_quality(self, quality_measure='scaled_jacobian', null_value=-1.0, progress_bar=False)
 |      Compute a function of (geometric) quality for each cell of a mesh.
 |
 |      The per-cell quality is added to the mesh's cell data, in an
 |      array named ``"CellQuality"``. Cell types not supported by this
 |      filter or undefined quality of supported cell types will have an
 |      entry of -1.
 |
 |      Defaults to computing the scaled Jacobian.
 |
 |      Options for cell quality measure:
 |
 |      - ``'area'``
 |      - ``'aspect_beta'``
 |      - ``'aspect_frobenius'``
 |      - ``'aspect_gamma'``
 |      - ``'aspect_ratio'``
 |      - ``'collapse_ratio'``
 |      - ``'condition'``
 |      - ``'diagonal'``
 |      - ``'dimension'``
 |      - ``'distortion'``
 |      - ``'jacobian'``
 |      - ``'max_angle'``
 |      - ``'max_aspect_frobenius'``
 |      - ``'max_edge_ratio'``
 |      - ``'med_aspect_frobenius'``
 |      - ``'min_angle'``
 |      - ``'oddy'``
 |      - ``'radius_ratio'``
 |      - ``'relative_size_squared'``
 |      - ``'scaled_jacobian'``
 |      - ``'shape'``
 |      - ``'shape_and_size'``
 |      - ``'shear'``
 |      - ``'shear_and_size'``
 |      - ``'skew'``
 |      - ``'stretch'``
 |      - ``'taper'``
 |      - ``'volume'``
 |      - ``'warpage'``
 |
 |      Parameters
 |      ----------
 |      quality_measure : str, default: 'scaled_jacobian'
 |          The cell quality measure to use.
 |
 |      null_value : float, default: -1.0
 |          Float value for undefined quality. Undefined quality are qualities
 |          that could be addressed by this filter but is not well defined for
 |          the particular geometry of cell in question, e.g. a volume query
 |          for a triangle. Undefined quality will always be undefined.
 |          The default value is -1.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Dataset with the computed mesh quality in the
 |          ``cell_data`` as the ``"CellQuality"`` array.
 |
 |      Examples
 |      --------
 |      Compute and plot the minimum angle of a sample sphere mesh.
 |
 |      >>> import pyvista
 |      >>> sphere = pyvista.Sphere(theta_resolution=20, phi_resolution=20)
 |      >>> cqual = sphere.compute_cell_quality('min_angle')
 |      >>> cqual.plot(show_edges=True)
 |
 |      See the :ref:`mesh_quality_example` for more examples using this filter.
 |
 |  compute_cell_sizes(self, length=True, area=True, volume=True, progress_bar=False)
 |      Compute sizes for 1D (length), 2D (area) and 3D (volume) cells.
 |
 |      Parameters
 |      ----------
 |      length : bool, optional
 |          Specify whether or not to compute the length of 1D cells.
 |
 |      area : bool, optional
 |          Specify whether or not to compute the area of 2D cells.
 |
 |      volume : bool, optional
 |          Specify whether or not to compute the volume of 3D cells.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Dataset with `cell_data` containing the ``"Length"``,
 |          ``"Area"``, and ``"Volume"`` arrays if set in the
 |          parameters.  Return type matches input.
 |
 |      Notes
 |      -----
 |      If cells do not have a dimension (for example, the length of
 |      hexahedral cells), the corresponding array will be all zeros.
 |
 |      Examples
 |      --------
 |      Compute the face area of the example airplane mesh.
 |
 |      >>> from pyvista import examples
 |      >>> surf = examples.load_airplane()
 |      >>> surf = surf.compute_cell_sizes(length=False, volume=False)
 |      >>> surf.plot(show_edges=True, scalars='Area')
 |
 |  compute_derivative(self, scalars=None, gradient=True, divergence=None, vorticity=None, qcriterion=None, faster=False, preference='point', progress_bar=False)
 |      Compute derivative-based quantities of point/cell scalar field.
 |
 |      Utilize ``vtkGradientFilter`` to compute derivative-based quantities,
 |      such as gradient, divergence, vorticity, and Q-criterion, of the
 |      selected point or cell scalar field.
 |
 |      Parameters
 |      ----------
 |      scalars : str, optional
 |          String name of the scalars array to use when computing the
 |          derivative quantities.  Defaults to the active scalars in
 |          the dataset.
 |
 |      gradient : bool, str, optional
 |          Calculate gradient. If a string is passed, the string will be used
 |          for the resulting array name. Otherwise, array name will be
 |          ``'gradient'``. Default ``True``.
 |
 |      divergence : bool, str, optional
 |          Calculate divergence. If a string is passed, the string will be
 |          used for the resulting array name. Otherwise, array name will be
 |          ``'divergence'``. Default ``None``.
 |
 |      vorticity : bool, str, optional
 |          Calculate vorticity. If a string is passed, the string will be used
 |          for the resulting array name. Otherwise, array name will be
 |          ``'vorticity'``. Default ``None``.
 |
 |      qcriterion : bool, str, optional
 |          Calculate qcriterion. If a string is passed, the string will be
 |          used for the resulting array name. Otherwise, array name will be
 |          ``'qcriterion'``. Default ``None``.
 |
 |      faster : bool, optional
 |          Use faster algorithm for computing derivative quantities. Result is
 |          less accurate and performs fewer derivative calculations,
 |          increasing computation speed. The error will feature smoothing of
 |          the output and possibly errors at boundaries. Option has no effect
 |          if DataSet is not UnstructuredGrid. Default ``False``.
 |
 |      preference : str, optional
 |          Data type preference. Either ``'point'`` or ``'cell'``.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Dataset with calculated derivative.
 |
 |      Examples
 |      --------
 |      First, plot the random hills dataset with the active elevation
 |      scalars.  These scalars will be used for the derivative
 |      calculations.
 |
 |      >>> from pyvista import examples
 |      >>> hills = examples.load_random_hills()
 |      >>> hills.plot(smooth_shading=True)
 |
 |      Compute and plot the gradient of the active scalars.
 |
 |      >>> from pyvista import examples
 |      >>> hills = examples.load_random_hills()
 |      >>> deriv = hills.compute_derivative()
 |      >>> deriv.plot(scalars='gradient')
 |
 |      See the :ref:`gradients_example` for more examples using this filter.
 |
 |  compute_implicit_distance(self, surface, inplace=False)
 |      Compute the implicit distance from the points to a surface.
 |
 |      This filter will compute the implicit distance from all of the
 |      nodes of this mesh to a given surface. This distance will be
 |      added as a point array called ``'implicit_distance'``.
 |
 |      Parameters
 |      ----------
 |      surface : pyvista.DataSet
 |          The surface used to compute the distance.
 |
 |      inplace : bool, optional
 |          If ``True``, a new scalar array will be added to the
 |          ``point_data`` of this mesh and the modified mesh will
 |          be returned. Otherwise a copy of this mesh is returned
 |          with that scalar field added.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Dataset containing the ``'implicit_distance'`` array in
 |          ``point_data``.
 |
 |      Examples
 |      --------
 |      Compute the distance between all the points on a sphere and a
 |      plane.
 |
 |      >>> import pyvista as pv
 |      >>> sphere = pv.Sphere()
 |      >>> plane = pv.Plane()
 |      >>> _ = sphere.compute_implicit_distance(plane, inplace=True)
 |      >>> dist = sphere['implicit_distance']
 |      >>> type(dist)
 |      <class 'pyvista.core.pyvista_ndarray.pyvista_ndarray'>
 |
 |      Plot these distances as a heatmap
 |
 |      >>> pl = pv.Plotter()
 |      >>> _ = pl.add_mesh(sphere, scalars='implicit_distance', cmap='bwr')
 |      >>> _ = pl.add_mesh(plane, color='w', style='wireframe')
 |      >>> pl.show()
 |
 |      See :ref:`clip_with_surface_example` and
 |      :ref:`voxelize_surface_mesh_example` for more examples using
 |      this filter.
 |
 |  connectivity(self, largest=False, progress_bar=False)
 |      Find and label connected bodies/volumes.
 |
 |      This adds an ID array to the point and cell data to
 |      distinguish separate connected bodies. This applies a
 |      ``vtkConnectivityFilter`` filter which extracts cells that
 |      share common points and/or meet other connectivity criterion.
 |
 |      Cells that share vertices and meet other connectivity
 |      criterion such as scalar range are known as a region.
 |
 |      Parameters
 |      ----------
 |      largest : bool, default: False
 |          Extract the largest connected part of the mesh.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Dataset with labeled connected bodies.  Return type
 |          matches input.
 |
 |      Examples
 |      --------
 |      Join two meshes together and plot their connectivity.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Sphere() + pyvista.Sphere(center=(2, 0, 0))
 |      >>> conn = mesh.connectivity(largest=False)
 |      >>> conn.plot(cmap=['red', 'blue'])
 |
 |      See :ref:`volumetric_example` for more examples using this filter.
 |
 |  contour(self, isosurfaces=10, scalars=None, compute_normals=False, compute_gradients=False, compute_scalars=True, rng=None, preference='point', method='contour', progress_bar=False)
 |      Contour an input self by an array.
 |
 |      ``isosurfaces`` can be an integer specifying the number of
 |      isosurfaces in the data range or a sequence of values for
 |      explicitly setting the isosurfaces.
 |
 |      Parameters
 |      ----------
 |      isosurfaces : int or sequence, optional
 |          Number of isosurfaces to compute across valid data range or a
 |          sequence of float values to explicitly use as the isosurfaces.
 |
 |      scalars : str, collections.abc.Sequence, numpy.ndarray, optional
 |          Name or array of scalars to threshold on. If this is an array, the
 |          output of this filter will save them as ``"Contour Data"``.
 |          Defaults to currently active scalars.
 |
 |      compute_normals : bool, optional
 |          Compute normals for the dataset.
 |
 |      compute_gradients : bool, optional
 |          Compute gradients for the dataset.
 |
 |      compute_scalars : bool, optional
 |          Preserves the scalar values that are being contoured.
 |
 |      rng : tuple(float), optional
 |          If an integer number of isosurfaces is specified, this is
 |          the range over which to generate contours. Default is the
 |          scalars array's full data range.
 |
 |      preference : str, optional
 |          When ``scalars`` is specified, this is the preferred array
 |          type to search for in the dataset.  Must be either
 |          ``'point'`` or ``'cell'``.
 |
 |      method : str, optional
 |          Specify to choose which vtk filter is used to create the contour.
 |          Must be one of ``'contour'``, ``'marching_cubes'`` and
 |          ``'flying_edges'``. Defaults to ``'contour'``.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Contoured surface.
 |
 |      Examples
 |      --------
 |      Generate contours for the random hills dataset.
 |
 |      >>> from pyvista import examples
 |      >>> hills = examples.load_random_hills()
 |      >>> contours = hills.contour()
 |      >>> contours.plot(line_width=5)
 |
 |      Generate the surface of a mobius strip using flying edges.
 |
 |      >>> import pyvista as pv
 |      >>> a = 0.4
 |      >>> b = 0.1
 |      >>> def f(x, y, z):
 |      ...     xx = x*x
 |      ...     yy = y*y
 |      ...     zz = z*z
 |      ...     xyz = x*y*z
 |      ...     xx_yy = xx + yy
 |      ...     a_xx = a*xx
 |      ...     b_yy = b*yy
 |      ...     return (
 |      ...         (xx_yy + 1) * (a_xx + b_yy)
 |      ...         + zz * (b * xx + a * yy) - 2 * (a - b) * xyz
 |      ...         - a * b * xx_yy
 |      ...     )**2 - 4 * (xx + yy) * (a_xx + b_yy - xyz * (a - b))**2
 |      >>> n = 100
 |      >>> x_min, y_min, z_min = -1.35, -1.7, -0.65
 |      >>> grid = pv.UniformGrid(
 |      ...     dimensions=(n, n, n),
 |      ...     spacing=(abs(x_min)/n*2, abs(y_min)/n*2, abs(z_min)/n*2),
 |      ...     origin=(x_min, y_min, z_min),
 |      ... )
 |      >>> x, y, z = grid.points.T
 |      >>> values = f(x, y, z)
 |      >>> out = grid.contour(
 |      ...     1, scalars=values, rng=[0, 0], method='flying_edges',
 |      ... )
 |      >>> out.plot(color='tan', smooth_shading=True)
 |
 |      See :ref:`common_filter_example` or
 |      :ref:`marching_cubes_example` for more examples using this
 |      filter.
 |
 |  ctp(self, pass_cell_data=False, progress_bar=False, **kwargs)
 |      Transform cell data into point data.
 |
 |      Point data are specified per node and cell data specified
 |      within cells.  Optionally, the input point data can be passed
 |      through to the output.
 |
 |      This method is an alias for
 |      :func:`pyvista.DataSetFilters.cell_data_to_point_data`.
 |
 |      Parameters
 |      ----------
 |      pass_cell_data : bool, optional
 |          If enabled, pass the input cell data through to the output.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      **kwargs : dict, optional
 |          Depreciated keyword argument ``pass_cell_arrays``.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Dataset with the cell data transformed into point data.
 |          Return type matches input.
 |
 |  decimate_boundary(self, target_reduction=0.5, progress_bar=False)
 |      Return a decimated version of a triangulation of the boundary.
 |
 |      Only the outer surface of the input dataset will be considered.
 |
 |      Parameters
 |      ----------
 |      target_reduction : float, default: 0.5
 |          Fraction of the original mesh to remove.
 |          TargetReduction is set to ``0.9``, this filter will try to reduce
 |          the data set to 10% of its original size and will remove 90%
 |          of the input triangles.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Decimated boundary.
 |
 |      Examples
 |      --------
 |      See the :ref:`linked_views_example` example.
 |
 |  delaunay_3d(self, alpha=0, tol=0.001, offset=2.5, progress_bar=False)
 |      Construct a 3D Delaunay triangulation of the mesh.
 |
 |      This filter can be used to generate a 3D tetrahedral mesh from
 |      a surface or scattered points.  If you want to create a
 |      surface from a point cloud, see
 |      :func:`pyvista.PolyDataFilters.reconstruct_surface`.
 |
 |      Parameters
 |      ----------
 |      alpha : float, optional
 |          Distance value to control output of this filter. For a
 |          non-zero alpha value, only vertices, edges, faces, or
 |          tetrahedra contained within the circumsphere (of radius
 |          alpha) will be output. Otherwise, only tetrahedra will be
 |          output.
 |
 |      tol : float, optional
 |          Tolerance to control discarding of closely spaced points.
 |          This tolerance is specified as a fraction of the diagonal
 |          length of the bounding box of the points.
 |
 |      offset : float, optional
 |          Multiplier to control the size of the initial, bounding
 |          Delaunay triangulation.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.UnstructuredGrid
 |          UnstructuredGrid containing the Delaunay triangulation.
 |
 |      Examples
 |      --------
 |      Generate a 3D Delaunay triangulation of a surface mesh of a
 |      sphere and plot the interior edges generated.
 |
 |      >>> import pyvista
 |      >>> sphere = pyvista.Sphere(theta_resolution=5, phi_resolution=5)
 |      >>> grid = sphere.delaunay_3d()
 |      >>> edges = grid.extract_all_edges()
 |      >>> edges.plot(line_width=5, color='k')
 |
 |  elevation(self, low_point=None, high_point=None, scalar_range=None, preference='point', set_active=True, progress_bar=False)
 |      Generate scalar values on a dataset.
 |
 |      The scalar values lie within a user specified range, and are
 |      generated by computing a projection of each dataset point onto
 |      a line.  The line can be oriented arbitrarily.  A typical
 |      example is to generate scalars based on elevation or height
 |      above a plane.
 |
 |      .. warning::
 |         This will create a scalars array named ``'Elevation'`` on the
 |         point data of the input dataset and overwrite the array
 |         named ``'Elevation'`` if present.
 |
 |      Parameters
 |      ----------
 |      low_point : tuple(float), optional
 |          The low point of the projection line in 3D space. Default is bottom
 |          center of the dataset. Otherwise pass a length 3 ``tuple(float)``.
 |
 |      high_point : tuple(float), optional
 |          The high point of the projection line in 3D space. Default is top
 |          center of the dataset. Otherwise pass a length 3 ``tuple(float)``.
 |
 |      scalar_range : str or tuple(float), optional
 |          The scalar range to project to the low and high points on the line
 |          that will be mapped to the dataset. If None given, the values will
 |          be computed from the elevation (Z component) range between the
 |          high and low points. Min and max of a range can be given as a length
 |          2 tuple(float). If ``str`` name of scalara array present in the
 |          dataset given, the valid range of that array will be used.
 |
 |      preference : str, optional
 |          When an array name is specified for ``scalar_range``, this is the
 |          preferred array type to search for in the dataset.
 |          Must be either ``'point'`` or ``'cell'``.
 |
 |      set_active : bool, optional
 |          A boolean flag on whether or not to set the new
 |          ``'Elevation'`` scalar as the active scalars array on the
 |          output dataset.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Dataset containing elevation scalars in the
 |          ``"Elevation"`` array in ``point_data``.
 |
 |      Examples
 |      --------
 |      Generate the "elevation" scalars for a sphere mesh.  This is
 |      simply the height in Z from the XY plane.
 |
 |      >>> import pyvista
 |      >>> sphere = pyvista.Sphere()
 |      >>> sphere_elv = sphere.elevation()
 |      >>> sphere_elv.plot(smooth_shading=True)
 |
 |      Access the first 4 elevation scalars.  This is a point-wise
 |      array containing the "elevation" of each point.
 |
 |      >>> sphere_elv['Elevation'][:4]  # doctest:+SKIP
 |      array([-0.5       ,  0.5       , -0.49706897, -0.48831028], dtype=float32)
 |
 |      See :ref:`common_filter_example` for more examples using this filter.
 |
 |  explode(self, factor=0.1)
 |      Push each individual cell away from the center of the dataset.
 |
 |      Parameters
 |      ----------
 |      factor : float, default: 0.1
 |          How much each cell will move from the center of the dataset
 |          relative to its distance from it. Increase this number to push the
 |          cells farther away.
 |
 |      Returns
 |      -------
 |      pyvista.UnstructuredGrid
 |          UnstructuredGrid containing the exploded cells.
 |
 |      Notes
 |      -----
 |      This is similar to :func:`shrink <pyvista.DataSetFilters.shrink>`
 |      except that it does not change the size of the cells.
 |
 |      Examples
 |      --------
 |      >>> import numpy as np
 |      >>> import pyvista as pv
 |      >>> xrng = np.linspace(0, 1, 3)
 |      >>> yrng = np.linspace(0, 2, 4)
 |      >>> zrng = np.linspace(0, 3, 5)
 |      >>> grid = pv.RectilinearGrid(xrng, yrng, zrng)
 |      >>> exploded = grid.explode()
 |      >>> exploded.plot(show_edges=True)
 |
 |  extract_all_edges(self, use_all_points=False, progress_bar=False)
 |      Extract all the internal/external edges of the dataset as PolyData.
 |
 |      This produces a full wireframe representation of the input dataset.
 |
 |      Parameters
 |      ----------
 |      use_all_points : bool, default: False
 |          Indicates whether all of the points of the input mesh should exist
 |          in the output. When ``True`` enables point renumbering.  If set to
 |          ``True``, then a threaded approach is used which avoids the use of
 |          a point locator and is quicker.
 |
 |          By default this is set to ``False``, and unused points are omitted
 |          from the output.
 |
 |          This parameter can only be set to ``True`` with ``vtk==9.1.0`` or newer.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Edges extracted from the dataset.
 |
 |      Examples
 |      --------
 |      Extract the edges of a sample unstructured grid and plot the edges.
 |      Note how it plots interior edges.
 |
 |      >>> import pyvista
 |      >>> from pyvista import examples
 |      >>> hex_beam = pyvista.read(examples.hexbeamfile)
 |      >>> edges = hex_beam.extract_all_edges()
 |      >>> edges.plot(line_width=5, color='k')
 |
 |      See :ref:`cell_centers_example` for more examples using this filter.
 |
 |  extract_cells(self, ind, progress_bar=False)
 |      Return a subset of the grid.
 |
 |      Parameters
 |      ----------
 |      ind : numpy.ndarray
 |          Numpy array of cell indices to be extracted.
 |
 |      progress_bar : bool, default: False
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.UnstructuredGrid
 |          Subselected grid.
 |
 |      Examples
 |      --------
 |      >>> import pyvista
 |      >>> from pyvista import examples
 |      >>> grid = pyvista.read(examples.hexbeamfile)
 |      >>> subset = grid.extract_cells(range(20))
 |      >>> subset.n_cells
 |      20
 |      >>> pl = pyvista.Plotter()
 |      >>> actor = pl.add_mesh(grid, style='wireframe', line_width=5, color='black')
 |      >>> actor = pl.add_mesh(subset, color='grey')
 |      >>> pl.show()
 |
 |  extract_feature_edges(self, feature_angle=30, boundary_edges=True, non_manifold_edges=True, feature_edges=True, manifold_edges=True, progress_bar=False)
 |      Extract edges from the surface of the mesh.
 |
 |      If the given mesh is not PolyData, the external surface of the given
 |      mesh is extracted and used.
 |
 |      From vtk documentation, the edges are one of the following:
 |
 |          1) Boundary (used by one polygon) or a line cell.
 |          2) Non-manifold (used by three or more polygons).
 |          3) Feature edges (edges used by two triangles and whose
 |             dihedral angle > feature_angle).
 |          4) Manifold edges (edges used by exactly two polygons).
 |
 |      Parameters
 |      ----------
 |      feature_angle : float, optional
 |          Feature angle (in degrees) used to detect sharp edges on
 |          the mesh. Used only when ``feature_edges=True``.  Defaults
 |          to 30 degrees.
 |
 |      boundary_edges : bool, optional
 |          Extract the boundary edges. Defaults to ``True``.
 |
 |      non_manifold_edges : bool, optional
 |          Extract non-manifold edges. Defaults to ``True``.
 |
 |      feature_edges : bool, optional
 |          Extract edges exceeding ``feature_angle``.  Defaults to
 |          ``True``.
 |
 |      manifold_edges : bool, optional
 |          Extract manifold edges. Defaults to ``True``.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Extracted edges.
 |
 |      Examples
 |      --------
 |      Extract the edges from an unstructured grid.
 |
 |      >>> import pyvista
 |      >>> from pyvista import examples
 |      >>> hex_beam = pyvista.read(examples.hexbeamfile)
 |      >>> feat_edges = hex_beam.extract_feature_edges()
 |      >>> feat_edges.clear_data()  # clear array data for plotting
 |      >>> feat_edges.plot(line_width=10)
 |
 |      See the :ref:`extract_edges_example` for more examples using this filter.
 |
 |  extract_geometry(self, extent: Optional[Sequence[float]] = None, progress_bar=False)
 |      Extract the outer surface of a volume or structured grid dataset.
 |
 |      This will extract all 0D, 1D, and 2D cells producing the
 |      boundary faces of the dataset.
 |
 |      .. note::
 |          This tends to be less efficient than :func:`extract_surface`.
 |
 |      Parameters
 |      ----------
 |      extent : sequence, optional
 |          Specify a (xmin,xmax, ymin,ymax, zmin,zmax) bounding box
 |          to clip data.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Surface of the dataset.
 |
 |      Examples
 |      --------
 |      Extract the surface of a sample unstructured grid.
 |
 |      >>> import pyvista
 |      >>> from pyvista import examples
 |      >>> hex_beam = pyvista.read(examples.hexbeamfile)
 |      >>> hex_beam.extract_geometry()  # doctest:+SKIP
 |      PolyData (0x7f2f8c132040)
 |        N Cells:      88
 |        N Points:     90
 |        X Bounds:     0.000e+00, 1.000e+00
 |        Y Bounds:     0.000e+00, 1.000e+00
 |        Z Bounds:     0.000e+00, 5.000e+00
 |        N Arrays:     3
 |
 |      See :ref:`surface_smoothing_example` for more examples using this filter.
 |
 |  extract_largest(self, inplace=False, progress_bar=False)
 |      Extract largest connected set in mesh.
 |
 |      Can be used to reduce residues obtained when generating an
 |      isosurface.  Works only if residues are not connected (share
 |      at least one point with) the main component of the image.
 |
 |      Parameters
 |      ----------
 |      inplace : bool, optional
 |          Updates mesh in-place.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Largest connected set in the dataset.  Return type matches input.
 |
 |      Examples
 |      --------
 |      Join two meshes together, extract the largest, and plot it.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Sphere() + pyvista.Cube()
 |      >>> largest = mesh.extract_largest()
 |      >>> largest.point_data.clear()
 |      >>> largest.cell_data.clear()
 |      >>> largest.plot()
 |
 |      See :ref:`volumetric_example` for more examples using this filter.
 |
 |  extract_points(self, ind, adjacent_cells=True, include_cells=True, progress_bar=False)
 |      Return a subset of the grid (with cells) that contains any of the given point indices.
 |
 |      Parameters
 |      ----------
 |      ind : np.ndarray, list, or sequence
 |          Numpy array of point indices to be extracted.
 |      adjacent_cells : bool, optional
 |          If ``True``, extract the cells that contain at least one of
 |          the extracted points. If ``False``, extract the cells that
 |          contain exclusively points from the extracted points list.
 |          The default is ``True``.
 |      include_cells : bool, optional
 |          Specifies if the cells shall be returned or not. The default
 |          is ``True``.
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.UnstructuredGrid
 |          Subselected grid.
 |
 |      Examples
 |      --------
 |      Extract all the points of a sphere with a Z coordinate greater than 0
 |
 |      >>> import pyvista
 |      >>> sphere = pyvista.Sphere()
 |      >>> extracted = sphere.extract_points(sphere.points[:, 2] > 0)
 |      >>> extracted.clear_data()  # clear for plotting
 |      >>> extracted.plot()
 |
 |  extract_surface(self, pass_pointid=True, pass_cellid=True, nonlinear_subdivision=1, progress_bar=False)
 |      Extract surface mesh of the grid.
 |
 |      Parameters
 |      ----------
 |      pass_pointid : bool, optional
 |          Adds a point array ``"vtkOriginalPointIds"`` that
 |          idenfities which original points these surface points
 |          correspond to.
 |
 |      pass_cellid : bool, optional
 |          Adds a cell array ``"vtkOriginalPointIds"`` that
 |          idenfities which original cells these surface cells
 |          correspond to.
 |
 |      nonlinear_subdivision : int, optional
 |          If the input is an unstructured grid with nonlinear faces,
 |          this parameter determines how many times the face is
 |          subdivided into linear faces.
 |
 |          If 0, the output is the equivalent of its linear
 |          counterpart (and the midpoints determining the nonlinear
 |          interpolation are discarded). If 1 (the default), the
 |          nonlinear face is triangulated based on the midpoints. If
 |          greater than 1, the triangulated pieces are recursively
 |          subdivided to reach the desired subdivision. Setting the
 |          value to greater than 1 may cause some point data to not
 |          be passed even if no nonlinear faces exist. This option
 |          has no effect if the input is not an unstructured grid.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Surface mesh of the grid.
 |
 |      Examples
 |      --------
 |      Extract the surface of an UnstructuredGrid.
 |
 |      >>> import pyvista
 |      >>> from pyvista import examples
 |      >>> grid = examples.load_hexbeam()
 |      >>> surf = grid.extract_surface()
 |      >>> type(surf)
 |      <class 'pyvista.core.pointset.PolyData'>
 |
 |      See the :ref:`extract_surface_example` for more examples using this filter.
 |
 |  glyph(self, orient=True, scale=True, factor=1.0, geom=None, indices=None, tolerance=None, absolute=False, clamping=False, rng=None, progress_bar=False)
 |      Copy a geometric representation (called a glyph) to the input dataset.
 |
 |      The glyph may be oriented along the input vectors, and it may
 |      be scaled according to scalar data or vector
 |      magnitude. Passing a table of glyphs to choose from based on
 |      scalars or vector magnitudes is also supported.  The arrays
 |      used for ``orient`` and ``scale`` must be either both point data
 |      or both cell data.
 |
 |      Parameters
 |      ----------
 |      orient : bool or str, optional
 |          If ``True``, use the active vectors array to orient the glyphs.
 |          If string, the vector array to use to orient the glyphs.
 |          If ``False``, the glyphs will not be orientated.
 |
 |      scale : bool, str or sequence, optional
 |          If ``True``, use the active scalars to scale the glyphs.
 |          If string, the scalar array to use to scale the glyphs.
 |          If ``False``, the glyphs will not be scaled.
 |
 |      factor : float, optional
 |          Scale factor applied to scaling array.
 |
 |      geom : vtk.vtkDataSet or tuple(vtk.vtkDataSet), optional
 |          The geometry to use for the glyph. If missing, an arrow glyph
 |          is used. If a sequence, the datasets inside define a table of
 |          geometries to choose from based on scalars or vectors. In this
 |          case a sequence of numbers of the same length must be passed as
 |          ``indices``. The values of the range (see ``rng``) affect lookup
 |          in the table.
 |
 |      indices : tuple(float), optional
 |          Specifies the index of each glyph in the table for lookup in case
 |          ``geom`` is a sequence. If given, must be the same length as
 |          ``geom``. If missing, a default value of ``range(len(geom))`` is
 |          used. Indices are interpreted in terms of the scalar range
 |          (see ``rng``). Ignored if ``geom`` has length 1.
 |
 |      tolerance : float, optional
 |          Specify tolerance in terms of fraction of bounding box length.
 |          Float value is between 0 and 1. Default is None. If ``absolute``
 |          is ``True`` then the tolerance can be an absolute distance.
 |          If ``None``, points merging as a preprocessing step is disabled.
 |
 |      absolute : bool, optional
 |          Control if ``tolerance`` is an absolute distance or a fraction.
 |
 |      clamping : bool, optional
 |          Turn on/off clamping of "scalar" values to range. Default ``False``.
 |
 |      rng : tuple(float), optional
 |          Set the range of values to be considered by the filter
 |          when scalars values are provided.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Glyphs at either the cell centers or points.
 |
 |      Examples
 |      --------
 |      Create arrow glyphs oriented by vectors and scaled by scalars.
 |      Factor parameter is used to reduce the size of the arrows.
 |
 |      >>> import pyvista
 |      >>> from pyvista import examples
 |      >>> mesh = examples.load_random_hills()
 |      >>> arrows = mesh.glyph(scale="Normals", orient="Normals", tolerance=0.05)
 |      >>> pl = pyvista.Plotter()
 |      >>> actor = pl.add_mesh(arrows, color="black")
 |      >>> actor = pl.add_mesh(mesh, scalars="Elevation", cmap="terrain",
 |      ...                     show_scalar_bar=False)
 |      >>> pl.show()
 |
 |      See :ref:`glyph_example` and :ref:`glyph_table_example` for more
 |      examples using this filter.
 |
 |  integrate_data(self, progress_bar=False)
 |      Integrate point and cell data.
 |
 |      Area or volume is also provided in point data.
 |
 |      This filter uses the VTK `vtkIntegrateAttributes
 |      <https://vtk.org/doc/nightly/html/classvtkIntegrateAttributes.html>`_
 |      and requires VTK v9.1.0 or newer.
 |
 |      Parameters
 |      ----------
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.UnstructuredGrid
 |          Mesh with 1 point and 1 vertex cell with integrated data in point
 |          and cell data.
 |
 |      Examples
 |      --------
 |      Integrate data on a sphere mesh.
 |
 |      >>> import pyvista
 |      >>> import numpy as np
 |      >>> sphere = pyvista.Sphere(theta_resolution=100, phi_resolution=100)
 |      >>> sphere.point_data["data"] = 2 * np.ones(sphere.n_points)
 |      >>> integrated = sphere.integrate_data()
 |
 |      There is only 1 point and cell, so access the only value.
 |
 |      >>> integrated["Area"][0]
 |      3.14
 |      >>> integrated["data"][0]
 |      6.28
 |
 |      See the :ref:`integrate_example` for more examples using this filter.
 |
 |  interpolate(self, target, sharpness=2, radius=1.0, strategy='null_value', null_value=0.0, n_points=None, pass_cell_data=True, pass_point_data=True, progress_bar=False)
 |      Interpolate values onto this mesh from a given dataset.
 |
 |      The input dataset is typically a point cloud. Only point data from
 |      the source mesh will be interpolated onto points of this mesh. Whether
 |      preexisting point and cell data of this mesh are preserved in the
 |      output can be customized with the ``pass_point_data`` and
 |      ``pass_cell_data`` parameters.
 |
 |      This uses a Gaussian interpolation kernel. Use the ``sharpness`` and
 |      ``radius`` parameters to adjust this kernel. You can also switch this
 |      kernel to use an N closest points approach.
 |
 |      Parameters
 |      ----------
 |      target : pyvista.DataSet
 |          The vtk data object to sample from. Point and cell arrays from
 |          this object are interpolated onto this mesh.
 |
 |      sharpness : float, optional
 |          Set the sharpness (i.e., falloff) of the Gaussian
 |          kernel. By default ``sharpness=2``. As the sharpness
 |          increases the effects of distant points are reduced.
 |
 |      radius : float, optional
 |          Specify the radius within which the basis points must lie.
 |
 |      strategy : str, optional
 |          Specify a strategy to use when encountering a "null" point during
 |          the interpolation process. Null points occur when the local
 |          neighborhood (of nearby points to interpolate from) is empty. If
 |          the strategy is set to ``'mask_points'``, then an output array is
 |          created that marks points as being valid (=1) or null (invalid
 |          =0) (and the NullValue is set as well). If the strategy is set to
 |          ``'null_value'`` (this is the default), then the output data
 |          value(s) are set to the ``null_value`` (specified in the output
 |          point data). Finally, the strategy ``'closest_point'`` is to simply
 |          use the closest point to perform the interpolation.
 |
 |      null_value : float, optional
 |          Specify the null point value. When a null point is encountered
 |          then all components of each null tuple are set to this value. By
 |          default the null value is set to zero.
 |
 |      n_points : int, optional
 |          If given, specifies the number of the closest points used to form
 |          the interpolation basis. This will invalidate the radius argument
 |          in favor of an N closest points approach. This typically has poorer
 |          results.
 |
 |      pass_cell_data : bool, optional
 |          Preserve input mesh's original cell data arrays.
 |
 |      pass_point_data : bool, optional
 |          Preserve input mesh's original point data arrays.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Interpolated dataset.  Return type matches input.
 |
 |      Examples
 |      --------
 |      Interpolate the values of 5 points onto a sample plane.
 |
 |      >>> import pyvista
 |      >>> import numpy as np
 |      >>> np.random.seed(7)
 |      >>> point_cloud = np.random.random((5, 3))
 |      >>> point_cloud[:, 2] = 0
 |      >>> point_cloud -= point_cloud.mean(0)
 |      >>> pdata = pyvista.PolyData(point_cloud)
 |      >>> pdata['values'] = np.random.random(5)
 |      >>> plane = pyvista.Plane()
 |      >>> plane.clear_data()
 |      >>> plane = plane.interpolate(pdata, sharpness=3)
 |      >>> pl = pyvista.Plotter()
 |      >>> _ = pl.add_mesh(pdata, render_points_as_spheres=True, point_size=50)
 |      >>> _ = pl.add_mesh(plane, style='wireframe', line_width=5)
 |      >>> pl.show()
 |
 |      See :ref:`interpolate_example` for more examples using this filter.
 |
 |  merge(self, grid=None, merge_points=True, inplace=False, main_has_priority=True, progress_bar=False)
 |      Join one or many other grids to this grid.
 |
 |      Grid is updated in-place by default.
 |
 |      Can be used to merge points of adjacent cells when no grids
 |      are input.
 |
 |      .. note::
 |         The ``+`` operator between two meshes uses this filter with
 |         the default parameters. When the target mesh is already a
 |         :class:`pyvista.UnstructuredGrid`, in-place merging via
 |         ``+=`` is similarly possible.
 |
 |      Parameters
 |      ----------
 |      grid : vtk.UnstructuredGrid or list of vtk.UnstructuredGrids, optional
 |          Grids to merge to this grid.
 |
 |      merge_points : bool, optional
 |          Points in exactly the same location will be merged between
 |          the two meshes. Warning: this can leave degenerate point data.
 |
 |      inplace : bool, optional
 |          Updates grid inplace when True if the input type is an
 |          :class:`pyvista.UnstructuredGrid`.
 |
 |      main_has_priority : bool, optional
 |          When this parameter is true and merge_points is true,
 |          the arrays of the merging grids will be overwritten
 |          by the original main mesh.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.UnstructuredGrid
 |          Merged grid.
 |
 |      Notes
 |      -----
 |      When two or more grids are joined, the type and name of each
 |      array must match or the arrays will be ignored and not
 |      included in the final merged mesh.
 |
 |      Examples
 |      --------
 |      Merge three separate spheres into a single mesh.
 |
 |      >>> import pyvista
 |      >>> sphere_a = pyvista.Sphere(center=(1, 0, 0))
 |      >>> sphere_b = pyvista.Sphere(center=(0, 1, 0))
 |      >>> sphere_c = pyvista.Sphere(center=(0, 0, 1))
 |      >>> merged = sphere_a.merge([sphere_b, sphere_c])
 |      >>> merged.plot()
 |
 |  outline(self, generate_faces=False, progress_bar=False)
 |      Produce an outline of the full extent for the input dataset.
 |
 |      Parameters
 |      ----------
 |      generate_faces : bool, optional
 |          Generate solid faces for the box. This is disabled by default.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Mesh containing an outline of the original dataset.
 |
 |      Examples
 |      --------
 |      Generate and plot the outline of a sphere.  This is
 |      effectively the ``(x, y, z)`` bounds of the mesh.
 |
 |      >>> import pyvista
 |      >>> sphere = pyvista.Sphere()
 |      >>> outline = sphere.outline()
 |      >>> pyvista.plot([sphere, outline], line_width=5)
 |
 |      See :ref:`common_filter_example` for more examples using this filter.
 |
 |  outline_corners(self, factor=0.2, progress_bar=False)
 |      Produce an outline of the corners for the input dataset.
 |
 |      Parameters
 |      ----------
 |      factor : float, optional
 |          Controls the relative size of the corners to the length of
 |          the corresponding bounds.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Mesh containing outlined corners.
 |
 |      Examples
 |      --------
 |      Generate and plot the corners of a sphere.  This is
 |      effectively the ``(x, y, z)`` bounds of the mesh.
 |
 |      >>> import pyvista
 |      >>> sphere = pyvista.Sphere()
 |      >>> corners = sphere.outline_corners(factor=0.1)
 |      >>> pyvista.plot([sphere, corners], line_width=5)
 |
 |  partition(self, n_partitions, generate_global_id=False, as_composite=True)
 |      Break down input dataset into a requested number of partitions.
 |
 |      Cells on boundaries are uniquely assigned to each partition without duplication.
 |
 |      It uses a kdtree implementation that builds balances the cell
 |      centers among a requested number of partitions. The current implementation
 |      only supports power-of-2 target partition. If a non-power of two value
 |      is specified for ``n_partitions``, then the load balancing simply
 |      uses the power-of-two greater than the requested value
 |
 |      For more details, see `vtkRedistributeDataSetFilter
 |      <https://vtk.org/doc/nightly/html/classvtkRedistributeDataSetFilter.html>`_.
 |
 |      Parameters
 |      ----------
 |      n_partitions : int
 |          Specify the number of partitions to split the input dataset
 |          into. Current implementation results in a number of partitions equal
 |          to the power of 2 greater than or equal to the chosen value.
 |
 |      generate_global_id : bool, default: False
 |          Generate global cell ids if ``None`` are present in the input.  If
 |          global cell ids are present in the input then this flag is
 |          ignored.
 |
 |          This is stored as ``"vtkGlobalCellIds"`` within the ``cell_data``
 |          of the output dataset(s).
 |
 |      as_composite : bool, default: False
 |          Return the partitioned dataset as a :class:`pyvista.MultiBlock`.
 |
 |      Returns
 |      -------
 |      pyvista.MultiBlock or pyvista.UnstructuredGrid
 |          UnStructuredGird if ``as_composite=False`` and MultiBlock when ``True``.
 |
 |      Notes
 |      -----
 |      This filter requires ``vtk>=9.0.0``.
 |
 |      Examples
 |      --------
 |      Partition a simple UniformGrid into a :class:`pyvista.MultiBlock`
 |      containing each partition.
 |
 |      >>> import pyvista as pv
 |      >>> grid = pv.UniformGrid(dimensions=(5, 5, 5))
 |      >>> out = grid.partition(4, as_composite=True)
 |      >>> out.plot(multi_colors=True, show_edges=True)
 |
 |      Partition of the Stanford bunny.
 |
 |      >>> from pyvista import examples
 |      >>> mesh = examples.download_bunny()
 |      >>> out = mesh.partition(4, as_composite=True)
 |      >>> out.plot(multi_colors=True, cpos='xy')
 |
 |  plot_over_circular_arc(self, pointa, pointb, center, resolution=None, scalars=None, title=None, ylabel=None, figsize=None, figure=True, show=True, tolerance=None, fname=None, progress_bar=False)
 |      Sample a dataset along a circular arc and plot it.
 |
 |      Plot the variables of interest in 2D where the X-axis is
 |      distance from Point A and the Y-axis is the variable of
 |      interest. Note that this filter returns ``None``.
 |
 |      Parameters
 |      ----------
 |      pointa : np.ndarray or list
 |          Location in ``[x, y, z]``.
 |
 |      pointb : np.ndarray or list
 |          Location in ``[x, y, z]``.
 |
 |      center : np.ndarray or list
 |          Location in ``[x, y, z]``.
 |
 |      resolution : int, optional
 |          Number of pieces to divide the circular arc into. Defaults
 |          to number of cells in the input mesh. Must be a positive
 |          integer.
 |
 |      scalars : str, optional
 |          The string name of the variable in the input dataset to
 |          probe. The active scalar is used by default.
 |
 |      title : str, optional
 |          The string title of the ``matplotlib`` figure.
 |
 |      ylabel : str, optional
 |          The string label of the Y-axis. Defaults to the variable name.
 |
 |      figsize : tuple(int), optional
 |          The size of the new figure.
 |
 |      figure : bool, optional
 |          Flag on whether or not to create a new figure.
 |
 |      show : bool, optional
 |          Shows the ``matplotlib`` figure when ``True``.
 |
 |      tolerance : float, optional
 |          Tolerance used to compute whether a point in the source is
 |          in a cell of the input.  If not given, tolerance is
 |          automatically generated.
 |
 |      fname : str, optional
 |          Save the figure this file name when set.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Examples
 |      --------
 |      Sample a dataset along a high resolution circular arc and plot.
 |
 |      >>> from pyvista import examples
 |      >>> mesh = examples.load_uniform()
 |      >>> a = [mesh.bounds[0], mesh.bounds[2], mesh.bounds[5]]
 |      >>> b = [mesh.bounds[1], mesh.bounds[2], mesh.bounds[4]]
 |      >>> center = [mesh.bounds[0], mesh.bounds[2], mesh.bounds[4]]
 |      >>> mesh.plot_over_circular_arc(a, b, center, resolution=1000, show=False)  # doctest:+SKIP
 |
 |  plot_over_circular_arc_normal(self, center, resolution=None, normal=None, polar=None, angle=None, scalars=None, title=None, ylabel=None, figsize=None, figure=True, show=True, tolerance=None, fname=None, progress_bar=False)
 |      Sample a dataset along a resolution circular arc defined by a normal and polar vector and plot it.
 |
 |      Plot the variables of interest in 2D where the X-axis is
 |      distance from Point A and the Y-axis is the variable of
 |      interest. Note that this filter returns ``None``.
 |
 |      Parameters
 |      ----------
 |      center : np.ndarray or list
 |          Location in ``[x, y, z]``.
 |
 |      resolution : int, optional
 |          Number of pieces to divide circular arc into. Defaults to
 |          number of cells in the input mesh. Must be a positive
 |          integer.
 |
 |      normal : np.ndarray or list, optional
 |          The normal vector to the plane of the arc.  By default it
 |          points in the positive Z direction.
 |
 |      polar : np.ndarray or list, optional
 |          Starting point of the arc in polar coordinates.  By
 |          default it is the unit vector in the positive x direction.
 |
 |      angle : float, optional
 |          Arc length (in degrees), beginning at the polar vector.  The
 |          direction is counterclockwise.  By default it is 360.
 |
 |      scalars : str, optional
 |          The string name of the variable in the input dataset to
 |          probe. The active scalar is used by default.
 |
 |      title : str, optional
 |          The string title of the `matplotlib` figure.
 |
 |      ylabel : str, optional
 |          The string label of the Y-axis. Defaults to variable name.
 |
 |      figsize : tuple(int), optional
 |          The size of the new figure.
 |
 |      figure : bool, optional
 |          Flag on whether or not to create a new figure.
 |
 |      show : bool, optional
 |          Shows the matplotlib figure.
 |
 |      tolerance : float, optional
 |          Tolerance used to compute whether a point in the source is
 |          in a cell of the input.  If not given, tolerance is
 |          automatically generated.
 |
 |      fname : str, optional
 |          Save the figure this file name when set.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Examples
 |      --------
 |      Sample a dataset along a high resolution circular arc and plot.
 |
 |      >>> from pyvista import examples
 |      >>> mesh = examples.load_uniform()
 |      >>> normal = normal = [0, 0, 1]
 |      >>> polar = [0, 9, 0]
 |      >>> angle = 90
 |      >>> center = [mesh.bounds[0], mesh.bounds[2], mesh.bounds[4]]
 |      >>> mesh.plot_over_circular_arc_normal(center, polar=polar, angle=angle)  # doctest:+SKIP
 |
 |  plot_over_line(self, pointa, pointb, resolution=None, scalars=None, title=None, ylabel=None, figsize=None, figure=True, show=True, tolerance=None, fname=None, progress_bar=False)
 |      Sample a dataset along a high resolution line and plot.
 |
 |      Plot the variables of interest in 2D using matplotlib where the
 |      X-axis is distance from Point A and the Y-axis is the variable
 |      of interest. Note that this filter returns ``None``.
 |
 |      Parameters
 |      ----------
 |      pointa : sequence
 |          Location in ``[x, y, z]``.
 |
 |      pointb : sequence
 |          Location in ``[x, y, z]``.
 |
 |      resolution : int, optional
 |          Number of pieces to divide line into. Defaults to number of cells
 |          in the input mesh. Must be a positive integer.
 |
 |      scalars : str, optional
 |          The string name of the variable in the input dataset to probe. The
 |          active scalar is used by default.
 |
 |      title : str, optional
 |          The string title of the matplotlib figure.
 |
 |      ylabel : str, optional
 |          The string label of the Y-axis. Defaults to variable name.
 |
 |      figsize : tuple(int), optional
 |          The size of the new figure.
 |
 |      figure : bool, optional
 |          Flag on whether or not to create a new figure.
 |
 |      show : bool, optional
 |          Shows the matplotlib figure.
 |
 |      tolerance : float, optional
 |          Tolerance used to compute whether a point in the source is in a
 |          cell of the input.  If not given, tolerance is automatically generated.
 |
 |      fname : str, optional
 |          Save the figure this file name when set.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Examples
 |      --------
 |      See the :ref:`plot_over_line_example` example.
 |
 |  point_data_to_cell_data(self, pass_point_data=False, progress_bar=False)
 |      Transform point data into cell data.
 |
 |      Point data are specified per node and cell data specified within cells.
 |      Optionally, the input point data can be passed through to the output.
 |
 |      See also: :func:`pyvista.DataSetFilters.cell_data_to_point_data`
 |
 |      Parameters
 |      ----------
 |      pass_point_data : bool, optional
 |          If enabled, pass the input point data through to the output.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Dataset with the point data transformed into cell data.
 |          Return type matches input.
 |
 |      Examples
 |      --------
 |      Color cells by their z coordinates.  First, create point
 |      scalars based on z-coordinates of a sample sphere mesh.  Then
 |      convert this point data to cell data.  Use a low resolution
 |      sphere for emphasis of cell valued data.
 |
 |      First, plot these values as point values to show the
 |      difference between point and cell data.
 |
 |      >>> import pyvista
 |      >>> sphere = pyvista.Sphere(theta_resolution=10, phi_resolution=10)
 |      >>> sphere['Z Coordinates'] = sphere.points[:, 2]
 |      >>> sphere.plot()
 |
 |      Now, convert these values to cell data and then plot it.
 |
 |      >>> import pyvista
 |      >>> sphere = pyvista.Sphere(theta_resolution=10, phi_resolution=10)
 |      >>> sphere['Z Coordinates'] = sphere.points[:, 2]
 |      >>> sphere = sphere.point_data_to_cell_data()
 |      >>> sphere.plot()
 |
 |  probe(self, points, tolerance=None, pass_cell_data=True, pass_point_data=True, categorical=False, progress_bar=False, locator=None)
 |      Sample data values at specified point locations.
 |
 |      This uses :class:`vtk.vtkProbeFilter`.
 |
 |      Parameters
 |      ----------
 |      points : pyvista.DataSet
 |          The points to probe values on to. This should be a PyVista mesh
 |          or something :func:`pyvista.wrap` can handle.
 |
 |      tolerance : float, optional
 |          Tolerance used to compute whether a point in the source is
 |          in a cell of the input.  If not given, tolerance is
 |          automatically generated.
 |
 |      pass_cell_data : bool, optional
 |          Preserve source mesh's original cell data arrays.
 |
 |      pass_point_data : bool, optional
 |          Preserve source mesh's original point data arrays.
 |
 |      categorical : bool, optional
 |          Control whether the source point data is to be treated as
 |          categorical. If the data is categorical, then the resultant data
 |          will be determined by a nearest neighbor interpolation scheme.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      locator : vtkAbstractCellLocator, optional
 |          Prototype cell locator to perform the ``FindCell()``
 |          operation.  This requires VTK 9.0.0 or newer.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Dataset containing the probed data.
 |
 |      Examples
 |      --------
 |      Probe the active scalars in ``grid`` at the points in ``mesh``.
 |
 |      >>> import pyvista as pv
 |      >>> from pyvista import examples
 |      >>> mesh = pv.Sphere(center=(4.5, 4.5, 4.5), radius=4.5)
 |      >>> grid = examples.load_uniform()
 |      >>> result = grid.probe(mesh)
 |      >>> 'Spatial Point Data' in result.point_data
 |      True
 |
 |  ptc(self, pass_point_data=False, progress_bar=False, **kwargs)
 |      Transform point data into cell data.
 |
 |      Point data are specified per node and cell data specified
 |      within cells.  Optionally, the input point data can be passed
 |      through to the output.
 |
 |      This method is an alias for
 |      :func:`pyvista.DataSetFilters.point_data_to_cell_data`.
 |
 |      Parameters
 |      ----------
 |      pass_point_data : bool, optional
 |          If enabled, pass the input point data through to the output.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      **kwargs : dict, optional
 |          Depreciated keyword argument ``pass_point_arrays``.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Dataset with the point data transformed into cell data.
 |          Return type matches input.
 |
 |  reflect(self, normal, point=None, inplace=False, transform_all_input_vectors=False, progress_bar=False)
 |      Reflect a dataset across a plane.
 |
 |      Parameters
 |      ----------
 |      normal : tuple(float)
 |          Normal direction for reflection.
 |
 |      point : tuple(float), optional
 |          Point which, along with ``normal``, defines the reflection
 |          plane. If not specified, this is the origin.
 |
 |      inplace : bool, optional
 |          When ``True``, modifies the dataset inplace.
 |
 |      transform_all_input_vectors : bool, optional
 |          When ``True``, all input vectors are transformed. Otherwise,
 |          only the points, normals and active vectors are transformed.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Reflected dataset.  Return type matches input.
 |
 |      Examples
 |      --------
 |      >>> from pyvista import examples
 |      >>> mesh = examples.load_airplane()
 |      >>> mesh = mesh.reflect((0, 0, 1), point=(0, 0, -100))
 |      >>> mesh.plot(show_edges=True)
 |
 |      See the :ref:`ref_reflect_example` for more examples using this filter.
 |
 |  sample(self, target, tolerance=None, pass_cell_data=True, pass_point_data=True, categorical=False, progress_bar=False)
 |      Resample array data from a passed mesh onto this mesh.
 |
 |      This uses :class:`vtk.vtkResampleWithDataSet`.
 |
 |      Parameters
 |      ----------
 |      target : pyvista.DataSet
 |          The vtk data object to sample from - point and cell arrays from
 |          this object are sampled onto the nodes of the ``dataset`` mesh.
 |
 |      tolerance : float, optional
 |          Tolerance used to compute whether a point in the source is
 |          in a cell of the input.  If not given, tolerance is
 |          automatically generated.
 |
 |      pass_cell_data : bool, optional
 |          Preserve source mesh's original cell data arrays.
 |
 |      pass_point_data : bool, optional
 |          Preserve source mesh's original point data arrays.
 |
 |      categorical : bool, optional
 |          Control whether the source point data is to be treated as
 |          categorical. If the data is categorical, then the resultant data
 |          will be determined by a nearest neighbor interpolation scheme.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Dataset containing resampled data.
 |
 |      Examples
 |      --------
 |      Resample data from another dataset onto a sphere.
 |
 |      >>> import pyvista
 |      >>> from pyvista import examples
 |      >>> mesh = pyvista.Sphere(center=(4.5, 4.5, 4.5), radius=4.5)
 |      >>> data_to_probe = examples.load_uniform()
 |      >>> result = mesh.sample(data_to_probe)
 |      >>> result.plot(scalars="Spatial Point Data")
 |
 |      See :ref:`resampling_example` for more examples using this filter.
 |
 |  sample_over_circular_arc(self, pointa, pointb, center, resolution=None, tolerance=None, progress_bar=False)
 |      Sample a dataset over a circular arc.
 |
 |      Parameters
 |      ----------
 |      pointa : np.ndarray or list
 |          Location in ``[x, y, z]``.
 |
 |      pointb : np.ndarray or list
 |          Location in ``[x, y, z]``.
 |
 |      center : np.ndarray or list
 |          Location in ``[x, y, z]``.
 |
 |      resolution : int, optional
 |          Number of pieces to divide circular arc into. Defaults to
 |          number of cells in the input mesh. Must be a positive
 |          integer.
 |
 |      tolerance : float, optional
 |          Tolerance used to compute whether a point in the source is
 |          in a cell of the input.  If not given, tolerance is
 |          automatically generated.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Arc containing the sampled data.
 |
 |      Examples
 |      --------
 |      Sample a dataset over a circular arc and plot it.
 |
 |      >>> import pyvista
 |      >>> from pyvista import examples
 |      >>> uniform = examples.load_uniform()
 |      >>> uniform["height"] = uniform.points[:, 2]
 |      >>> pointa = [uniform.bounds[1], uniform.bounds[2], uniform.bounds[5]]
 |      >>> pointb = [uniform.bounds[1], uniform.bounds[3], uniform.bounds[4]]
 |      >>> center = [uniform.bounds[1], uniform.bounds[2], uniform.bounds[4]]
 |      >>> sampled_arc = uniform.sample_over_circular_arc(pointa, pointb, center)
 |      >>> pl = pyvista.Plotter()
 |      >>> _ = pl.add_mesh(uniform, style='wireframe')
 |      >>> _ = pl.add_mesh(sampled_arc, line_width=10)
 |      >>> pl.show_axes()
 |      >>> pl.show()
 |
 |  sample_over_circular_arc_normal(self, center, resolution=None, normal=None, polar=None, angle=None, tolerance=None, progress_bar=False)
 |      Sample a dataset over a circular arc defined by a normal and polar vector and plot it.
 |
 |      The number of segments composing the polyline is controlled by
 |      setting the object resolution.
 |
 |      Parameters
 |      ----------
 |      center : np.ndarray or list
 |          Location in ``[x, y, z]``.
 |
 |      resolution : int, optional
 |          Number of pieces to divide circular arc into. Defaults to
 |          number of cells in the input mesh. Must be a positive
 |          integer.
 |
 |      normal : np.ndarray or list, optional
 |          The normal vector to the plane of the arc.  By default it
 |          points in the positive Z direction.
 |
 |      polar : np.ndarray or list, optional
 |          Starting point of the arc in polar coordinates.  By
 |          default it is the unit vector in the positive x direction.
 |
 |      angle : float, optional
 |          Arc length (in degrees), beginning at the polar vector.  The
 |          direction is counterclockwise.  By default it is 360.
 |
 |      tolerance : float, optional
 |          Tolerance used to compute whether a point in the source is
 |          in a cell of the input.  If not given, tolerance is
 |          automatically generated.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Sampled Dataset.
 |
 |      Examples
 |      --------
 |      Sample a dataset over a circular arc.
 |
 |      >>> import pyvista
 |      >>> from pyvista import examples
 |      >>> uniform = examples.load_uniform()
 |      >>> uniform["height"] = uniform.points[:, 2]
 |      >>> normal = [0, 0, 1]
 |      >>> polar = [0, 9, 0]
 |      >>> center = [uniform.bounds[1], uniform.bounds[2], uniform.bounds[5]]
 |      >>> arc = uniform.sample_over_circular_arc_normal(center, normal=normal,
 |      ...                                               polar=polar)
 |      >>> pl = pyvista.Plotter()
 |      >>> _ = pl.add_mesh(uniform, style='wireframe')
 |      >>> _ = pl.add_mesh(arc, line_width=10)
 |      >>> pl.show_axes()
 |      >>> pl.show()
 |
 |  sample_over_line(self, pointa, pointb, resolution=None, tolerance=None, progress_bar=False)
 |      Sample a dataset onto a line.
 |
 |      Parameters
 |      ----------
 |      pointa : sequence
 |          Location in ``[x, y, z]``.
 |
 |      pointb : sequence
 |          Location in ``[x, y, z]``.
 |
 |      resolution : int, optional
 |          Number of pieces to divide line into. Defaults to number of cells
 |          in the input mesh. Must be a positive integer.
 |
 |      tolerance : float, optional
 |          Tolerance used to compute whether a point in the source is in a
 |          cell of the input.  If not given, tolerance is automatically generated.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Line object with sampled data from dataset.
 |
 |      Examples
 |      --------
 |      Sample over a plane that is interpolating a point cloud.
 |
 |      >>> import pyvista
 |      >>> import numpy as np
 |      >>> np.random.seed(12)
 |      >>> point_cloud = np.random.random((5, 3))
 |      >>> point_cloud[:, 2] = 0
 |      >>> point_cloud -= point_cloud.mean(0)
 |      >>> pdata = pyvista.PolyData(point_cloud)
 |      >>> pdata['values'] = np.random.random(5)
 |      >>> plane = pyvista.Plane()
 |      >>> plane.clear_data()
 |      >>> plane = plane.interpolate(pdata, sharpness=3.5)
 |      >>> sample = plane.sample_over_line((-0.5, -0.5, 0), (0.5, 0.5, 0))
 |      >>> pl = pyvista.Plotter()
 |      >>> _ = pl.add_mesh(pdata, render_points_as_spheres=True, point_size=50)
 |      >>> _ = pl.add_mesh(sample, scalars='values', line_width=10)
 |      >>> _ = pl.add_mesh(plane, scalars='values', style='wireframe')
 |      >>> pl.show()
 |
 |  sample_over_multiple_lines(self, points, tolerance=None, progress_bar=False)
 |      Sample a dataset onto a multiple lines.
 |
 |      Parameters
 |      ----------
 |      points : np.ndarray or list
 |          List of points defining multiple lines.
 |
 |      tolerance : float, optional
 |          Tolerance used to compute whether a point in the source is in a
 |          cell of the input.  If not given, tolerance is automatically generated.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Line object with sampled data from dataset.
 |
 |      Examples
 |      --------
 |      Sample over a plane that is interpolating a point cloud.
 |
 |      >>> import pyvista
 |      >>> import numpy as np
 |      >>> np.random.seed(12)
 |      >>> point_cloud = np.random.random((5, 3))
 |      >>> point_cloud[:, 2] = 0
 |      >>> point_cloud -= point_cloud.mean(0)
 |      >>> pdata = pyvista.PolyData(point_cloud)
 |      >>> pdata['values'] = np.random.random(5)
 |      >>> plane = pyvista.Plane()
 |      >>> plane.clear_data()
 |      >>> plane = plane.interpolate(pdata, sharpness=3.5)
 |      >>> sample = plane.sample_over_multiple_lines([[-0.5, -0.5, 0], [0.5, -0.5, 0], [0.5, 0.5, 0]])
 |      >>> pl = pyvista.Plotter()
 |      >>> _ = pl.add_mesh(pdata, render_points_as_spheres=True, point_size=50)
 |      >>> _ = pl.add_mesh(sample, scalars='values', line_width=10)
 |      >>> _ = pl.add_mesh(plane, scalars='values', style='wireframe')
 |      >>> pl.show()
 |
 |  select_enclosed_points(self, surface, tolerance=0.001, inside_out=False, check_surface=True, progress_bar=False)
 |      Mark points as to whether they are inside a closed surface.
 |
 |      This evaluates all the input points to determine whether they are in an
 |      enclosed surface. The filter produces a (0,1) mask
 |      (in the form of a vtkDataArray) that indicates whether points are
 |      outside (mask value=0) or inside (mask value=1) a provided surface.
 |      (The name of the output vtkDataArray is ``"SelectedPoints"``.)
 |
 |      This filter produces and output data array, but does not modify the
 |      input dataset. If you wish to extract cells or poinrs, various
 |      threshold filters are available (i.e., threshold the output array).
 |
 |      .. warning::
 |         The filter assumes that the surface is closed and
 |         manifold. A boolean flag can be set to force the filter to
 |         first check whether this is true. If ``False`` and not manifold,
 |         an error will be raised.
 |
 |      Parameters
 |      ----------
 |      surface : pyvista.PolyData
 |          Set the surface to be used to test for containment. This must be a
 |          :class:`pyvista.PolyData` object.
 |
 |      tolerance : float, optional
 |          The tolerance on the intersection. The tolerance is expressed as a
 |          fraction of the bounding box of the enclosing surface.
 |
 |      inside_out : bool, optional
 |          By default, points inside the surface are marked inside or sent
 |          to the output. If ``inside_out`` is ``True``, then the points
 |          outside the surface are marked inside.
 |
 |      check_surface : bool, optional
 |          Specify whether to check the surface for closure. If on, then the
 |          algorithm first checks to see if the surface is closed and
 |          manifold. If the surface is not closed and manifold, a runtime
 |          error is raised.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Mesh containing the ``point_data['SelectedPoints']`` array.
 |
 |      Examples
 |      --------
 |      Determine which points on a plane are inside a manifold sphere
 |      surface mesh.  Extract these points using the
 |      :func:`DataSetFilters.extract_points` filter and then plot them.
 |
 |      >>> import pyvista
 |      >>> sphere = pyvista.Sphere()
 |      >>> plane = pyvista.Plane()
 |      >>> selected = plane.select_enclosed_points(sphere)
 |      >>> pts = plane.extract_points(selected['SelectedPoints'].view(bool),
 |      ...                            adjacent_cells=False)
 |      >>> pl = pyvista.Plotter()
 |      >>> _ = pl.add_mesh(sphere, style='wireframe')
 |      >>> _ = pl.add_points(pts, color='r')
 |      >>> pl.show()
 |
 |  separate_cells(self)
 |      Return a copy of the dataset with separated cells with no shared points.
 |
 |      This method may be useful when datasets have scalars that need to be
 |      associated to each point of each cell rather than either each cell or
 |      just the points of the dataset.
 |
 |      Returns
 |      -------
 |      pyvista.UnstructuredGrid
 |          UnstructuredGrid with isolated cells.
 |
 |      Examples
 |      --------
 |      Load the example hex beam and separate its cells. This increases the
 |      total number of points in the dataset since points are no longer
 |      shared.
 |
 |      >>> from pyvista import examples
 |      >>> grid = examples.load_hexbeam()
 |      >>> grid.n_points
 |      99
 |      >>> sep_grid = grid.separate_cells()
 |      >>> sep_grid.n_points
 |      320
 |
 |      See the :ref:`point_cell_scalars_example` for a more detailed example
 |      using this filter.
 |
 |  shrink(self, shrink_factor=1.0, progress_bar=False)
 |      Shrink the individual faces of a mesh.
 |
 |      This filter shrinks the individual faces of a mesh rather than
 |      scaling the entire mesh.
 |
 |      Parameters
 |      ----------
 |      shrink_factor : float, optional
 |          Fraction of shrink for each cell.  Defaults to 1.0, which
 |          does not modify the faces.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Dataset with shrunk faces.  Return type matches input.
 |
 |      Examples
 |      --------
 |      First, plot the original cube.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Cube()
 |      >>> mesh.plot(show_edges=True, line_width=5)
 |
 |      Now, plot the mesh with shrunk faces.
 |
 |      >>> shrunk = mesh.shrink(0.5)
 |      >>> shrunk.clear_data()  # cleans up plot
 |      >>> shrunk.plot(show_edges=True, line_width=5)
 |
 |  slice(self, normal='x', origin=None, generate_triangles=False, contour=False, progress_bar=False)
 |      Slice a dataset by a plane at the specified origin and normal vector orientation.
 |
 |      If no origin is specified, the center of the input dataset will be used.
 |
 |      Parameters
 |      ----------
 |      normal : tuple(float) or str, default: 'x'
 |          Length 3 tuple for the normal vector direction. Can also be
 |          specified as a string conventional direction such as ``'x'`` for
 |          ``(1, 0, 0)`` or ``'-x'`` for ``(-1, 0, 0)``, etc.
 |
 |      origin : tuple(float), optional
 |          The center ``(x, y, z)`` coordinate of the plane on which
 |          the slice occurs.
 |
 |      generate_triangles : bool, optional
 |          If this is enabled (``False`` by default), the output will
 |          be triangles. Otherwise the output will be the intersection
 |          polygons.
 |
 |      contour : bool, optional
 |          If ``True``, apply a ``contour`` filter after slicing.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Sliced dataset.
 |
 |      Examples
 |      --------
 |      Slice the surface of a sphere.
 |
 |      >>> import pyvista
 |      >>> sphere = pyvista.Sphere()
 |      >>> slice_x = sphere.slice(normal='x')
 |      >>> slice_y = sphere.slice(normal='y')
 |      >>> slice_z = sphere.slice(normal='z')
 |      >>> slices = slice_x + slice_y + slice_z
 |      >>> slices.plot(line_width=5)
 |
 |      See :ref:`slice_example` for more examples using this filter.
 |
 |  slice_along_axis(self, n=5, axis='x', tolerance=None, generate_triangles=False, contour=False, bounds=None, center=None, progress_bar=False)
 |      Create many slices of the input dataset along a specified axis.
 |
 |      Parameters
 |      ----------
 |      n : int, optional
 |          The number of slices to create.
 |
 |      axis : str or int, default: 'x'
 |          The axis to generate the slices along. Perpendicular to the
 |          slices. Can be string name (``'x'``, ``'y'``, or ``'z'``) or
 |          axis index (``0``, ``1``, or ``2``).
 |
 |      tolerance : float, optional
 |          The tolerance to the edge of the dataset bounds to create
 |          the slices. The ``n`` slices are placed equidistantly with
 |          an absolute padding of ``tolerance`` inside each side of the
 |          ``bounds`` along the specified axis. Defaults to 1% of the
 |          ``bounds`` along the specified axis.
 |
 |      generate_triangles : bool, optional
 |          If this is enabled (``False`` by default), the output will
 |          be triangles. Otherwise the output will be the intersection
 |          polygons.
 |
 |      contour : bool, optional
 |          If ``True``, apply a ``contour`` filter after slicing.
 |
 |      bounds : sequence, optional
 |          A 6-length sequence overriding the bounds of the mesh.
 |          The bounds along the specified axis define the extent
 |          where slices are taken.
 |
 |      center : sequence, optional
 |          A 3-length sequence specifying the position of the line
 |          along which slices are taken. Defaults to the center of
 |          the mesh.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Sliced dataset.
 |
 |      Examples
 |      --------
 |      Slice the random hills dataset in the X direction.
 |
 |      >>> from pyvista import examples
 |      >>> hills = examples.load_random_hills()
 |      >>> slices = hills.slice_along_axis(n=10)
 |      >>> slices.plot(line_width=5)
 |
 |      Slice the random hills dataset in the Z direction.
 |
 |      >>> from pyvista import examples
 |      >>> hills = examples.load_random_hills()
 |      >>> slices = hills.slice_along_axis(n=10, axis='z')
 |      >>> slices.plot(line_width=5)
 |
 |      See :ref:`slice_example` for more examples using this filter.
 |
 |  slice_along_line(self, line, generate_triangles=False, contour=False, progress_bar=False)
 |      Slice a dataset using a polyline/spline as the path.
 |
 |      This also works for lines generated with :func:`pyvista.Line`.
 |
 |      Parameters
 |      ----------
 |      line : pyvista.PolyData
 |          A PolyData object containing one single PolyLine cell.
 |
 |      generate_triangles : bool, optional
 |          If this is enabled (``False`` by default), the output will
 |          be triangles. Otherwise the output will be the intersection
 |          polygons.
 |
 |      contour : bool, optional
 |          If ``True``, apply a ``contour`` filter after slicing.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Sliced dataset.
 |
 |      Examples
 |      --------
 |      Slice the random hills dataset along a circular arc.
 |
 |      >>> import numpy as np
 |      >>> import pyvista
 |      >>> from pyvista import examples
 |      >>> hills = examples.load_random_hills()
 |      >>> center = np.array(hills.center)
 |      >>> point_a = center + np.array([5, 0, 0])
 |      >>> point_b = center + np.array([-5, 0, 0])
 |      >>> arc = pyvista.CircularArc(point_a, point_b, center, resolution=100)
 |      >>> line_slice = hills.slice_along_line(arc)
 |
 |      Plot the circular arc and the hills mesh.
 |
 |      >>> pl = pyvista.Plotter()
 |      >>> _ = pl.add_mesh(hills, smooth_shading=True, style='wireframe')
 |      >>> _ = pl.add_mesh(line_slice, line_width=10, render_lines_as_tubes=True,
 |      ...                 color='k')
 |      >>> _ = pl.add_mesh(arc, line_width=10, color='grey')
 |      >>> pl.show()
 |
 |      See :ref:`slice_example` for more examples using this filter.
 |
 |  slice_implicit(self, implicit_function, generate_triangles=False, contour=False, progress_bar=False)
 |      Slice a dataset by a VTK implicit function.
 |
 |      Parameters
 |      ----------
 |      implicit_function : vtk.vtkImplicitFunction
 |          Specify the implicit function to perform the cutting.
 |
 |      generate_triangles : bool, default: False
 |          If this is enabled (``False`` by default), the output will
 |          be triangles. Otherwise the output will be the intersection
 |          polygons. If the cutting function is not a plane, the
 |          output will be 3D polygons, which might be nice to look at
 |          but hard to compute with downstream.
 |
 |      contour : bool, default: False
 |          If ``True``, apply a ``contour`` filter after slicing.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Sliced dataset.
 |
 |      Examples
 |      --------
 |      Slice the surface of a sphere.
 |
 |      >>> import pyvista as pv
 |      >>> import vtk
 |      >>> sphere = vtk.vtkSphere()
 |      >>> sphere.SetRadius(10)
 |      >>> mesh = pv.Wavelet()
 |      >>> slice = mesh.slice_implicit(sphere)
 |      >>> slice.plot(show_edges=True, line_width=5)
 |
 |      >>> sphere = vtk.vtkCylinder()
 |      >>> sphere.SetRadius(10)
 |      >>> mesh = pv.Wavelet()
 |      >>> slice = mesh.slice_implicit(sphere)
 |      >>> slice.plot(show_edges=True, line_width=5)
 |
 |  slice_orthogonal(self, x=None, y=None, z=None, generate_triangles=False, contour=False, progress_bar=False)
 |      Create three orthogonal slices through the dataset on the three cartesian planes.
 |
 |      Yields a MutliBlock dataset of the three slices.
 |
 |      Parameters
 |      ----------
 |      x : float, optional
 |          The X location of the YZ slice.
 |
 |      y : float, optional
 |          The Y location of the XZ slice.
 |
 |      z : float, optional
 |          The Z location of the XY slice.
 |
 |      generate_triangles : bool, optional
 |          If this is enabled (``False`` by default), the output will
 |          be triangles. Otherwise the output will be the intersection
 |          polygons.
 |
 |      contour : bool, optional
 |          If ``True``, apply a ``contour`` filter after slicing.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Sliced dataset.
 |
 |      Examples
 |      --------
 |      Slice the random hills dataset with three orthogonal planes.
 |
 |      >>> from pyvista import examples
 |      >>> hills = examples.load_random_hills()
 |      >>> slices = hills.slice_orthogonal(contour=False)
 |      >>> slices.plot(line_width=5)
 |
 |      See :ref:`slice_example` for more examples using this filter.
 |
 |  split_bodies(self, label=False, progress_bar=False)
 |      Find, label, and split connected bodies/volumes.
 |
 |      This splits different connected bodies into blocks in a
 |      :class:`pyvista.MultiBlock` dataset.
 |
 |      Parameters
 |      ----------
 |      label : bool, optional
 |          A flag on whether to keep the ID arrays given by the
 |          ``connectivity`` filter.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.MultiBlock
 |          MultiBlock with a split bodies.
 |
 |      Examples
 |      --------
 |      Split a uniform grid thresholded to be non-connected.
 |
 |      >>> from pyvista import examples
 |      >>> dataset = examples.load_uniform()
 |      >>> _ = dataset.set_active_scalars('Spatial Cell Data')
 |      >>> threshed = dataset.threshold_percent([0.15, 0.50], invert=True)
 |      >>> bodies = threshed.split_bodies()
 |      >>> len(bodies)
 |      2
 |
 |      See :ref:`split_vol_ref` for more examples using this filter.
 |
 |  streamlines(self, vectors=None, source_center=None, source_radius=None, n_points=100, start_position=None, return_source=False, pointa=None, pointb=None, progress_bar=False, **kwargs)
 |      Integrate a vector field to generate streamlines.
 |
 |      The default behavior uses a sphere as the source - set its
 |      location and radius via the ``source_center`` and
 |      ``source_radius`` keyword arguments.  ``n_points`` defines the
 |      number of starting points on the sphere surface.
 |      Alternatively, a line source can be used by specifying
 |      ``pointa`` and ``pointb``.  ``n_points`` again defines the
 |      number of points on the line.
 |
 |      You can retrieve the source by specifying
 |      ``return_source=True``.
 |
 |      Optional keyword parameters from
 |      :func:`pyvista.DataSetFilters.streamlines_from_source` can be
 |      used here to control the generation of streamlines.
 |
 |      Parameters
 |      ----------
 |      vectors : str, optional
 |          The string name of the active vector field to integrate across.
 |
 |      source_center : tuple(float), optional
 |          Length 3 tuple of floats defining the center of the source
 |          particles. Defaults to the center of the dataset.
 |
 |      source_radius : float, optional
 |          Float radius of the source particle cloud. Defaults to one-tenth of
 |          the diagonal of the dataset's spatial extent.
 |
 |      n_points : int, optional
 |          Number of particles present in source sphere or line.
 |
 |      start_position : tuple(float), optional
 |          A single point.  This will override the sphere point source.
 |
 |      return_source : bool, optional
 |          Return the source particles as :class:`pyvista.PolyData` as well as the
 |          streamlines. This will be the second value returned if ``True``.
 |
 |      pointa, pointb : tuple(float), optional
 |          The coordinates of a start and end point for a line source. This
 |          will override the sphere and start_position point source.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      **kwargs : dict, optional
 |          See :func:`pyvista.DataSetFilters.streamlines_from_source`.
 |
 |      Returns
 |      -------
 |      streamlines : pyvista.PolyData
 |          This produces polylines as the output, with each cell
 |          (i.e., polyline) representing a streamline. The attribute values
 |          associated with each streamline are stored in the cell data, whereas
 |          those associated with streamline-points are stored in the point data.
 |
 |      source : pyvista.PolyData
 |          The points of the source are the seed points for the streamlines.
 |          Only returned if ``return_source=True``.
 |
 |      Examples
 |      --------
 |      See the :ref:`streamlines_example` example.
 |
 |  streamlines_evenly_spaced_2D(self, vectors=None, start_position=None, integrator_type=2, step_length=0.5, step_unit='cl', max_steps=2000, terminal_speed=1e-12, interpolator_type='point', separating_distance=10, separating_distance_ratio=0.5, closed_loop_maximum_distance=0.5, loop_angle=20, minimum_number_of_loop_points=4, compute_vorticity=True, progress_bar=False)
 |      Generate evenly spaced streamlines on a 2D dataset.
 |
 |      This filter only supports datasets that lie on the xy plane, i.e. ``z=0``.
 |      Particular care must be used to choose a `separating_distance`
 |      that do not result in too much memory being utilized.  The
 |      default unit is cell length.
 |
 |      .. warning::
 |          This filter is unstable for ``vtk<9.0``.
 |          See `pyvista issue 1508 <https://github.com/pyvista/pyvista/issues/1508>`_.
 |
 |      Parameters
 |      ----------
 |      vectors : str, optional
 |          The string name of the active vector field to integrate across.
 |
 |      start_position : sequence(float), optional
 |          The seed point for generating evenly spaced streamlines.
 |          If not supplied, a random position in the dataset is chosen.
 |
 |      integrator_type : {2, 4}, optional
 |          The integrator type to be used for streamline generation.
 |          The default is Runge-Kutta2. The recognized solvers are:
 |          RUNGE_KUTTA2 (``2``) and RUNGE_KUTTA4 (``4``).
 |
 |      step_length : float, optional
 |          Constant Step size used for line integration, expressed in length
 |          units or cell length units (see ``step_unit`` parameter).
 |
 |      step_unit : {'cl', 'l'}, optional
 |          Uniform integration step unit. The valid unit is now limited to
 |          only LENGTH_UNIT (``'l'``) and CELL_LENGTH_UNIT (``'cl'``).
 |          Default is CELL_LENGTH_UNIT: ``'cl'``.
 |
 |      max_steps : int, optional
 |          Maximum number of steps for integrating a streamline.
 |          Defaults to ``2000``.
 |
 |      terminal_speed : float, optional
 |          Terminal speed value, below which integration is terminated.
 |
 |      interpolator_type : str, optional
 |          Set the type of the velocity field interpolator to locate cells
 |          during streamline integration either by points or cells.
 |          The cell locator is more robust then the point locator. Options
 |          are ``'point'`` or ``'cell'`` (abbreviations of ``'p'`` and ``'c'``
 |          are also supported).
 |
 |      separating_distance : float, optional
 |          The distance between streamlines expressed in ``step_unit``.
 |
 |      separating_distance_ratio : float, optional
 |          Streamline integration is stopped if streamlines are closer than
 |          ``SeparatingDistance*SeparatingDistanceRatio`` to other streamlines.
 |
 |      closed_loop_maximum_distance : float, optional
 |          The distance between points on a streamline to determine a
 |          closed loop.
 |
 |      loop_angle : float, optional
 |          The maximum angle in degrees between points to determine a closed loop.
 |
 |      minimum_number_of_loop_points : int, optional
 |          The minimum number of points before which a closed loop will
 |          be determined.
 |
 |      compute_vorticity : bool, optional
 |          Vorticity computation at streamline points. Necessary for generating
 |          proper stream-ribbons using the ``vtkRibbonFilter``.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          This produces polylines as the output, with each cell
 |          (i.e., polyline) representing a streamline. The attribute
 |          values associated with each streamline are stored in the
 |          cell data, whereas those associated with streamline-points
 |          are stored in the point data.
 |
 |      Examples
 |      --------
 |      Plot evenly spaced streamlines for cylinder in a crossflow.
 |      This dataset is a multiblock dataset, and the fluid velocity is in the
 |      first block.
 |
 |      >>> import pyvista
 |      >>> from pyvista import examples
 |      >>> mesh = examples.download_cylinder_crossflow()
 |      >>> streams = mesh[0].streamlines_evenly_spaced_2D(start_position=(4, 0.1, 0.),
 |      ...                                                separating_distance=3,
 |      ...                                                separating_distance_ratio=0.2)
 |      >>> plotter = pyvista.Plotter()
 |      >>> _ = plotter.add_mesh(streams.tube(radius=0.02), scalars="vorticity_mag")
 |      >>> plotter.view_xy()
 |      >>> plotter.show()
 |
 |      See :ref:`2d_streamlines_example` for more examples using this filter.
 |
 |  streamlines_from_source(self, source, vectors=None, integrator_type=45, integration_direction='both', surface_streamlines=False, initial_step_length=0.5, step_unit='cl', min_step_length=0.01, max_step_length=1.0, max_steps=2000, terminal_speed=1e-12, max_error=1e-06, max_time=None, compute_vorticity=True, rotation_scale=1.0, interpolator_type='point', progress_bar=False)
 |      Generate streamlines of vectors from the points of a source mesh.
 |
 |      The integration is performed using a specified integrator, by default
 |      Runge-Kutta2. This supports integration through any type of dataset.
 |      If the dataset contains 2D cells like polygons or triangles and the
 |      ``surface_streamlines`` parameter is used, the integration is constrained
 |      to lie on the surface defined by 2D cells.
 |
 |      Parameters
 |      ----------
 |      source : pyvista.DataSet
 |          The points of the source provide the starting points of the
 |          streamlines.  This will override both sphere and line sources.
 |
 |      vectors : str, optional
 |          The string name of the active vector field to integrate across.
 |
 |      integrator_type : {45, 2, 4}, optional
 |          The integrator type to be used for streamline generation.
 |          The default is Runge-Kutta45. The recognized solvers are:
 |          RUNGE_KUTTA2 (``2``),  RUNGE_KUTTA4 (``4``), and RUNGE_KUTTA45
 |          (``45``). Options are ``2``, ``4``, or ``45``. Default is ``45``.
 |
 |      integration_direction : str, optional
 |          Specify whether the streamline is integrated in the upstream or
 |          downstream directions (or both). Options are ``'both'``,
 |          ``'backward'``, or ``'forward'``.
 |
 |      surface_streamlines : bool, optional
 |          Compute streamlines on a surface. Default ``False``.
 |
 |      initial_step_length : float, optional
 |          Initial step size used for line integration, expressed ib length
 |          unitsL or cell length units (see ``step_unit`` parameter).
 |          either the starting size for an adaptive integrator, e.g., RK45, or
 |          the constant / fixed size for non-adaptive ones, i.e., RK2 and RK4).
 |
 |      step_unit : {'cl', 'l'}, optional
 |          Uniform integration step unit. The valid unit is now limited to
 |          only LENGTH_UNIT (``'l'``) and CELL_LENGTH_UNIT (``'cl'``).
 |          Default is CELL_LENGTH_UNIT: ``'cl'``.
 |
 |      min_step_length : float, optional
 |          Minimum step size used for line integration, expressed in length or
 |          cell length units. Only valid for an adaptive integrator, e.g., RK45.
 |
 |      max_step_length : float, optional
 |          Maximum step size used for line integration, expressed in length or
 |          cell length units. Only valid for an adaptive integrator, e.g., RK45.
 |
 |      max_steps : int, optional
 |          Maximum number of steps for integrating a streamline.
 |          Defaults to ``2000``.
 |
 |      terminal_speed : float, optional
 |          Terminal speed value, below which integration is terminated.
 |
 |      max_error : float, optional
 |          Maximum error tolerated throughout streamline integration.
 |
 |      max_time : float, optional
 |          Specify the maximum length of a streamline expressed in LENGTH_UNIT.
 |
 |      compute_vorticity : bool, optional
 |          Vorticity computation at streamline points. Necessary for generating
 |          proper stream-ribbons using the ``vtkRibbonFilter``.
 |
 |      rotation_scale : float, optional
 |          This can be used to scale the rate with which the streamribbons
 |          twist. The default is 1.
 |
 |      interpolator_type : str, optional
 |          Set the type of the velocity field interpolator to locate cells
 |          during streamline integration either by points or cells.
 |          The cell locator is more robust then the point locator. Options
 |          are ``'point'`` or ``'cell'`` (abbreviations of ``'p'`` and ``'c'``
 |          are also supported).
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Streamlines. This produces polylines as the output, with
 |          each cell (i.e., polyline) representing a streamline. The
 |          attribute values associated with each streamline are
 |          stored in the cell data, whereas those associated with
 |          streamline-points are stored in the point data.
 |
 |      Examples
 |      --------
 |      See the :ref:`streamlines_example` example.
 |
 |  surface_indices(self, progress_bar=False)
 |      Return the surface indices of a grid.
 |
 |      Parameters
 |      ----------
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      numpy.ndarray
 |          Indices of the surface points.
 |
 |      Examples
 |      --------
 |      Return the first 10 surface indices of an UnstructuredGrid.
 |
 |      >>> from pyvista import examples
 |      >>> grid = examples.load_hexbeam()
 |      >>> ind = grid.surface_indices()
 |      >>> ind[:10]  # doctest:+SKIP
 |      pyvista_ndarray([ 0,  2, 36, 27,  7,  8, 81,  1, 18,  4])
 |
 |  tessellate(self, max_n_subdivide=3, merge_points=True, progress_bar=False)
 |      Tessellate a mesh.
 |
 |      This filter approximates nonlinear FEM-like elements with linear
 |      simplices. The output mesh will have geometry and any fields specified
 |      as attributes in the input mesh's point data. The attribute's copy
 |      flags are honored, except for normals.
 |
 |      For more details see `vtkTessellatorFilter <https://vtk.org/doc/nightly/html/classvtkTessellatorFilter.html#details>`_.
 |
 |      Parameters
 |      ----------
 |      max_n_subdivide : int, optional
 |          Maximum number of subdivisions.
 |          Defaults to ``3``.
 |
 |      merge_points : bool, optional
 |          The adaptive tessellation will output vertices that are not shared among cells,
 |          even where they should be. This can be corrected to some extent.
 |          Defaults to ``True``.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Dataset with tessellated mesh.  Return type matches input.
 |
 |      Examples
 |      --------
 |      First, plot the high order FEM-like elements.
 |
 |      >>> import pyvista
 |      >>> import numpy as np
 |      >>> points = np.array(
 |      ...     [
 |      ...         [0.0, 0.0, 0.0],
 |      ...         [2.0, 0.0, 0.0],
 |      ...         [1.0, 2.0, 0.0],
 |      ...         [1.0, 0.5, 0.0],
 |      ...         [1.5, 1.5, 0.0],
 |      ...         [0.5, 1.5, 0.0],
 |      ...     ]
 |      ... )
 |      >>> cells = np.array([6, 0, 1, 2, 3, 4, 5])
 |      >>> cell_types = np.array([69])
 |      >>> mesh = pyvista.UnstructuredGrid(cells, cell_types, points)
 |      >>> mesh.plot(show_edges=True, line_width=5)
 |
 |      Now, plot the tessellated mesh.
 |
 |      >>> tessellated = mesh.tessellate()
 |      >>> tessellated.clear_data()  # cleans up plot
 |      >>> tessellated.plot(show_edges=True, line_width=5)
 |
 |  texture_map_to_plane(self, origin=None, point_u=None, point_v=None, inplace=False, name='Texture Coordinates', use_bounds=False, progress_bar=False)
 |      Texture map this dataset to a user defined plane.
 |
 |      This is often used to define a plane to texture map an image
 |      to this dataset.  The plane defines the spatial reference and
 |      extent of that image.
 |
 |      Parameters
 |      ----------
 |      origin : tuple(float), optional
 |          Length 3 iterable of floats defining the XYZ coordinates of the
 |          bottom left corner of the plane.
 |
 |      point_u : tuple(float), optional
 |          Length 3 iterable of floats defining the XYZ coordinates of the
 |          bottom right corner of the plane.
 |
 |      point_v : tuple(float), optional
 |          Length 3 iterable of floats defining the XYZ coordinates of the
 |          top left corner of the plane.
 |
 |      inplace : bool, optional
 |          If ``True``, the new texture coordinates will be added to this
 |          dataset. If ``False`` (default), a new dataset is returned
 |          with the texture coordinates.
 |
 |      name : str, optional
 |          The string name to give the new texture coordinates if applying
 |          the filter inplace.
 |
 |      use_bounds : bool, optional
 |          Use the bounds to set the mapping plane by default (bottom plane
 |          of the bounding box).
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Original dataset with texture coordinates if
 |          ``inplace=True``, otherwise a copied dataset.
 |
 |      Examples
 |      --------
 |      See :ref:`ref_topo_map_example`
 |
 |  texture_map_to_sphere(self, center=None, prevent_seam=True, inplace=False, name='Texture Coordinates', progress_bar=False)
 |      Texture map this dataset to a user defined sphere.
 |
 |      This is often used to define a sphere to texture map an image
 |      to this dataset. The sphere defines the spatial reference and
 |      extent of that image.
 |
 |      Parameters
 |      ----------
 |      center : tuple(float), optional
 |          Length 3 iterable of floats defining the XYZ coordinates of the
 |          center of the sphere. If ``None``, this will be automatically
 |          calculated.
 |
 |      prevent_seam : bool, optional
 |          Control how the texture coordinates are generated.  If
 |          set, the s-coordinate ranges from 0 to 1 and 1 to 0
 |          corresponding to the theta angle variation between 0 to
 |          180 and 180 to 0 degrees.  Otherwise, the s-coordinate
 |          ranges from 0 to 1 between 0 to 360 degrees.  Default
 |          ``True``.
 |
 |      inplace : bool, optional
 |          If ``True``, the new texture coordinates will be added to
 |          the dataset inplace. If ``False`` (default), a new dataset
 |          is returned with the texture coordinates.
 |
 |      name : str, optional
 |          The string name to give the new texture coordinates if applying
 |          the filter inplace.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Dataset containing the texture mapped to a sphere.  Return
 |          type matches input.
 |
 |      Examples
 |      --------
 |      See :ref:`ref_texture_example`.
 |
 |  threshold(self, value=None, scalars=None, invert=False, continuous=False, preference='cell', all_scalars=False, component_mode='all', component=0, method='upper', progress_bar=False)
 |      Apply a ``vtkThreshold`` filter to the input dataset.
 |
 |      This filter will apply a ``vtkThreshold`` filter to the input
 |      dataset and return the resulting object. This extracts cells
 |      where the scalar value in each cell satisfies the threshold
 |      criterion.  If ``scalars`` is ``None``, the input's active
 |      scalars array is used.
 |
 |      .. warning::
 |         Thresholding is inherently a cell operation, even though it can use
 |         associated point data for determining whether to keep a cell. In
 |         other words, whether or not a given point is included after
 |         thresholding depends on whether that point is part of a cell that
 |         is kept after thresholding.
 |
 |         Please also note the default ``preference`` choice for CELL data
 |         over POINT data. This is contrary to most other places in PyVista's
 |         API where the preference typically defaults to POINT data. We chose
 |         to prefer CELL data here so that if thresholding by a named array
 |         that exists for both the POINT and CELL data, this filter will
 |         default to the CELL data array while performing the CELL-wise
 |         operation.
 |
 |      Parameters
 |      ----------
 |      value : float or sequence, optional
 |          Single value or (min, max) to be used for the data threshold. If
 |          a sequence, then length must be 2. If no value is specified, the
 |          non-NaN data range will be used to remove any NaN values.
 |          Please reference the ``method`` parameter for how single values
 |          are handled.
 |
 |      scalars : str, optional
 |          Name of scalars to threshold on. Defaults to currently active scalars.
 |
 |      invert : bool, default: False
 |          Invert the threshold results. That is, cells that would have been
 |          in the output with this option off are excluded, while cells that
 |          would have been excluded from the output are included.
 |
 |          .. warning::
 |              This option is only supported for VTK version 9+
 |
 |      continuous : bool, default: False
 |          When True, the continuous interval [minimum cell scalar,
 |          maximum cell scalar] will be used to intersect the threshold bound,
 |          rather than the set of discrete scalar values from the vertices.
 |
 |      preference : str, default: 'cell'
 |          When ``scalars`` is specified, this is the preferred array
 |          type to search for in the dataset.  Must be either
 |          ``'point'`` or ``'cell'``. Throughout PyVista, the preference
 |          is typically ``'point'`` but since the threshold filter is a
 |          cell-wise operation, we prefer cell data for thresholding
 |          operations.
 |
 |      all_scalars : bool, default: False
 |          If using scalars from point data, all
 |          points in a cell must satisfy the threshold when this
 |          value is ``True``.  When ``False``, any point of the cell
 |          with a scalar value satisfying the threshold criterion
 |          will extract the cell. Has no effect when using cell data.
 |
 |      component_mode : {'selected', 'all', 'any'}
 |          The method to satisfy the criteria for the threshold of
 |          multicomponent scalars.  'selected' (default)
 |          uses only the ``component``.  'all' requires all
 |          components to meet criteria.  'any' is when
 |          any component satisfies the criteria.
 |
 |      component : int, default: 0
 |          When using ``component_mode='selected'``, this sets
 |          which component to threshold on.
 |
 |      method : str, default: 'upper'
 |          Set the threshold method for single-values, defining which
 |          threshold bounds to use. If the ``value`` is a range, this
 |          parameter will be ignored, extracting data between the two
 |          values. For single values, ``'lower'`` will extract data
 |          lower than the  ``value``. ``'upper'`` will extract data
 |          larger than the ``value``.
 |
 |      progress_bar : bool, default: False
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.UnstructuredGrid
 |          Dataset containing geometry that meets the threshold requirements.
 |
 |      Examples
 |      --------
 |      >>> import pyvista
 |      >>> import numpy as np
 |      >>> volume = np.zeros([10, 10, 10])
 |      >>> volume[:3] = 1
 |      >>> vol = pyvista.wrap(volume)
 |      >>> threshed = vol.threshold(0.1)
 |      >>> threshed  # doctest:+SKIP
 |      UnstructuredGrid (0x7f00f9983fa0)
 |        N Cells:      243
 |        N Points:     400
 |        X Bounds:     0.000e+00, 3.000e+00
 |        Y Bounds:     0.000e+00, 9.000e+00
 |        Z Bounds:     0.000e+00, 9.000e+00
 |        N Arrays:     1
 |
 |      Apply the threshold filter to Perlin noise.  First generate
 |      the structured grid.
 |
 |      >>> import pyvista
 |      >>> noise = pyvista.perlin_noise(0.1, (1, 1, 1), (0, 0, 0))
 |      >>> grid = pyvista.sample_function(noise, [0, 1.0, -0, 1.0, 0, 1.0],
 |      ...                                dim=(20, 20, 20))
 |      >>> grid.plot(cmap='gist_earth_r', show_scalar_bar=True, show_edges=False)
 |
 |      Next, apply the threshold.
 |
 |      >>> import pyvista
 |      >>> noise = pyvista.perlin_noise(0.1, (1, 1, 1), (0, 0, 0))
 |      >>> grid = pyvista.sample_function(noise, [0, 1.0, -0, 1.0, 0, 1.0],
 |      ...                                dim=(20, 20, 20))
 |      >>> threshed = grid.threshold(value=0.02)
 |      >>> threshed.plot(cmap='gist_earth_r', show_scalar_bar=False, show_edges=True)
 |
 |      See :ref:`common_filter_example` for more examples using this filter.
 |
 |  threshold_percent(self, percent=0.5, scalars=None, invert=False, continuous=False, preference='cell', method='upper', progress_bar=False)
 |      Threshold the dataset by a percentage of its range on the active scalars array.
 |
 |      .. warning::
 |         Thresholding is inherently a cell operation, even though it can use
 |         associated point data for determining whether to keep a cell. In
 |         other words, whether or not a given point is included after
 |         thresholding depends on whether that point is part of a cell that
 |         is kept after thresholding.
 |
 |      Parameters
 |      ----------
 |      percent : float or tuple(float), optional
 |          The percentage (0,1) to threshold. If value is out of 0 to 1 range,
 |          then it will be divided by 100 and checked to be in that range.
 |
 |      scalars : str, optional
 |          Name of scalars to threshold on. Defaults to currently active scalars.
 |
 |      invert : bool, default: False
 |          Invert the threshold results. That is, cells that would have been
 |          in the output with this option off are excluded, while cells that
 |          would have been excluded from the output are included.
 |
 |          .. warning::
 |              This option is only supported for VTK version 9+
 |
 |      continuous : bool, default: False
 |          When True, the continuous interval [minimum cell scalar,
 |          maximum cell scalar] will be used to intersect the threshold bound,
 |          rather than the set of discrete scalar values from the vertices.
 |
 |      preference : str, default: 'cell'
 |          When ``scalars`` is specified, this is the preferred array
 |          type to search for in the dataset.  Must be either
 |          ``'point'`` or ``'cell'``. Throughout PyVista, the preference
 |          is typically ``'point'`` but since the threshold filter is a
 |          cell-wise operation, we prefer cell data for thresholding
 |          operations.
 |
 |      method : str, default: 'upper'
 |          Set the threshold method for single-values, defining which
 |          threshold bounds to use. If the ``value`` is a range, this
 |          parameter will be ignored, extracting data between the two
 |          values. For single values, ``'lower'`` will extract data
 |          lower than the  ``value``. ``'upper'`` will extract data
 |          larger than the ``value``.
 |
 |      progress_bar : bool, default: False
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.UnstructuredGrid
 |          Dataset containing geometry that meets the threshold requirements.
 |
 |      Examples
 |      --------
 |      Apply a 50% threshold filter.
 |
 |      >>> import pyvista
 |      >>> noise = pyvista.perlin_noise(0.1, (2, 2, 2), (0, 0, 0))
 |      >>> grid = pyvista.sample_function(noise, [0, 1.0, -0, 1.0, 0, 1.0],
 |      ...                                dim=(30, 30, 30))
 |      >>> threshed = grid.threshold_percent(0.5)
 |      >>> threshed.plot(cmap='gist_earth_r', show_scalar_bar=False, show_edges=True)
 |
 |      Apply a 80% threshold filter.
 |
 |      >>> threshed = grid.threshold_percent(0.8)
 |      >>> threshed.plot(cmap='gist_earth_r', show_scalar_bar=False, show_edges=True)
 |
 |      See :ref:`common_filter_example` for more examples using a similar filter.
 |
 |  transform(self: vtkmodules.vtkCommonDataModel.vtkDataSet, trans: Union[vtkmodules.vtkCommonMath.vtkMatrix4x4, vtkmodules.vtkCommonTransforms.vtkTransform, numpy.ndarray], transform_all_input_vectors=False, inplace=True, progress_bar=False)
 |      Transform this mesh with a 4x4 transform.
 |
 |      .. warning::
 |          When using ``transform_all_input_vectors=True``, there is
 |          no distinction in VTK between vectors and arrays with
 |          three components.  This may be an issue if you have scalar
 |          data with three components (e.g. RGB data).  This will be
 |          improperly transformed as if it was vector data rather
 |          than scalar data.  One possible (albeit ugly) workaround
 |          is to store the three components as separate scalar
 |          arrays.
 |
 |      .. warning::
 |          In general, transformations give non-integer results. This
 |          method converts integer-typed vector data to float before
 |          performing the transformation. This applies to the points
 |          array, as well as any vector-valued data that is affected
 |          by the transformation. To prevent subtle bugs arising from
 |          in-place transformations truncating the result to integers,
 |          this conversion always applies to the input mesh.
 |
 |      Parameters
 |      ----------
 |      trans : vtk.vtkMatrix4x4, vtk.vtkTransform, or numpy.ndarray
 |          Accepts a vtk transformation object or a 4x4
 |          transformation matrix.
 |
 |      transform_all_input_vectors : bool, optional
 |          When ``True``, all arrays with three components are
 |          transformed. Otherwise, only the normals and vectors are
 |          transformed.  See the warning for more details.
 |
 |      inplace : bool, optional
 |          When ``True``, modifies the dataset inplace.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Transformed dataset.  Return type matches input unless
 |          input dataset is a :class:`pyvista.UniformGrid`, in which
 |          case the output datatype is a :class:`pyvista.StructuredGrid`.
 |
 |      Examples
 |      --------
 |      Translate a mesh by ``(50, 100, 200)``.
 |
 |      >>> import numpy as np
 |      >>> from pyvista import examples
 |      >>> mesh = examples.load_airplane()
 |
 |      Here a 4x4 :class:`numpy.ndarray` is used, but
 |      ``vtk.vtkMatrix4x4`` and ``vtk.vtkTransform`` are also
 |      accepted.
 |
 |      >>> transform_matrix = np.array([[1, 0, 0, 50],
 |      ...                              [0, 1, 0, 100],
 |      ...                              [0, 0, 1, 200],
 |      ...                              [0, 0, 0, 1]])
 |      >>> transformed = mesh.transform(transform_matrix)
 |      >>> transformed.plot(show_edges=True)
 |
 |  triangulate(self, inplace=False, progress_bar=False)
 |      Return an all triangle mesh.
 |
 |      More complex polygons will be broken down into triangles.
 |
 |      Parameters
 |      ----------
 |      inplace : bool, optional
 |          Updates mesh in-place.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          Mesh containing only triangles.
 |
 |      Examples
 |      --------
 |      Generate a mesh with quadrilateral faces.
 |
 |      >>> import pyvista
 |      >>> plane = pyvista.Plane()
 |      >>> plane.point_data.clear()
 |      >>> plane.plot(show_edges=True, line_width=5)
 |
 |      Convert it to an all triangle mesh.
 |
 |      >>> mesh = plane.triangulate()
 |      >>> mesh.plot(show_edges=True, line_width=5)
 |
 |  warp_by_scalar(self, scalars=None, factor=1.0, normal=None, inplace=False, progress_bar=False, **kwargs)
 |      Warp the dataset's points by a point data scalars array's values.
 |
 |      This modifies point coordinates by moving points along point
 |      normals by the scalar amount times the scale factor.
 |
 |      Parameters
 |      ----------
 |      scalars : str, optional
 |          Name of scalars to warp by. Defaults to currently active scalars.
 |
 |      factor : float, optional
 |          A scaling factor to increase the scaling effect. Alias
 |          ``scale_factor`` also accepted - if present, overrides ``factor``.
 |
 |      normal : sequence, optional
 |          User specified normal. If given, data normals will be
 |          ignored and the given normal will be used to project the
 |          warp.
 |
 |      inplace : bool, optional
 |          If ``True``, the points of the given dataset will be updated.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      **kwargs : dict, optional
 |          Accepts ``scale_factor`` instead of ``factor``.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Warped Dataset.  Return type matches input.
 |
 |      Examples
 |      --------
 |      First, plot the unwarped mesh.
 |
 |      >>> from pyvista import examples
 |      >>> mesh = examples.download_st_helens()
 |      >>> mesh.plot(cmap='gist_earth', show_scalar_bar=False)
 |
 |      Now, warp the mesh by the ``'Elevation'`` scalars.
 |
 |      >>> warped = mesh.warp_by_scalar('Elevation')
 |      >>> warped.plot(cmap='gist_earth', show_scalar_bar=False)
 |
 |      See :ref:`surface_normal_example` for more examples using this filter.
 |
 |  warp_by_vector(self, vectors=None, factor=1.0, inplace=False, progress_bar=False)
 |      Warp the dataset's points by a point data vectors array's values.
 |
 |      This modifies point coordinates by moving points along point
 |      vectors by the local vector times the scale factor.
 |
 |      A classical application of this transform is to visualize
 |      eigenmodes in mechanics.
 |
 |      Parameters
 |      ----------
 |      vectors : str, optional
 |          Name of vector to warp by. Defaults to currently active vector.
 |
 |      factor : float, optional
 |          A scaling factor that multiplies the vectors to warp by. Can
 |          be used to enhance the warping effect.
 |
 |      inplace : bool, optional
 |          If ``True``, the function will update the mesh in-place.
 |
 |      progress_bar : bool, optional
 |          Display a progress bar to indicate progress.
 |
 |      Returns
 |      -------
 |      pyvista.PolyData
 |          The warped mesh resulting from the operation.
 |
 |      Examples
 |      --------
 |      Warp a sphere by vectors.
 |
 |      >>> import pyvista as pv
 |      >>> from pyvista import examples
 |      >>> sphere = examples.load_sphere_vectors()
 |      >>> warped = sphere.warp_by_vector()
 |      >>> pl = pv.Plotter(shape=(1, 2))
 |      >>> pl.subplot(0, 0)
 |      >>> actor = pl.add_text("Before warp")
 |      >>> actor = pl.add_mesh(sphere, color='white')
 |      >>> pl.subplot(0, 1)
 |      >>> actor = pl.add_text("After warp")
 |      >>> actor = pl.add_mesh(warped, color='white')
 |      >>> pl.show()
 |
 |      See :ref:`warp_by_vectors_example` for more examples using this filter.
 |
 |  ----------------------------------------------------------------------
 |  Data descriptors inherited from pyvista.core.filters.data_set.DataSetFilters:
 |
 |  __weakref__
 |      list of weak references to the object (if defined)
 |
 |  ----------------------------------------------------------------------
 |  Methods inherited from pyvista.core.dataobject.DataObject:
 |
 |  __eq__(self, other)
 |      Test equivalency between data objects.
 |
 |  __getstate__(self)
 |      Support pickle by serializing the VTK object data to something which can be pickled natively.
 |
 |      The format of the serialized VTK object data depends on `pyvista.PICKLE_FORMAT` (case-insensitive).
 |      - If `pyvista.PICKLE_FORMAT == 'xml'`, the data is serialized as an XML-formatted string.
 |      - If `pyvista.PICKLE_FORMAT == 'legacy'`, the data is serialized to bytes in VTK's binary format.
 |
 |  __setstate__(self, state)
 |      Support unpickle.
 |
 |  add_field_data(self, array: numpy.ndarray, name: str, deep=True)
 |      Add field data.
 |
 |      Use field data when size of the data you wish to associate
 |      with the dataset does not match the number of points or cells
 |      of the dataset.
 |
 |      Parameters
 |      ----------
 |      array : sequence
 |          Array of data to add to the dataset as a field array.
 |
 |      name : str
 |          Name to assign the field array.
 |
 |      deep : bool, optional
 |          Perform a deep copy of the data when adding it to the
 |          dataset.  Default ``True``.
 |
 |      Examples
 |      --------
 |      Add field data to a PolyData dataset.
 |
 |      >>> import pyvista
 |      >>> import numpy as np
 |      >>> mesh = pyvista.Sphere()
 |      >>> mesh.add_field_data(np.arange(10), 'my-field-data')
 |      >>> mesh['my-field-data']
 |      pyvista_ndarray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
 |
 |      Add field data to a UniformGrid dataset.
 |
 |      >>> mesh = pyvista.UniformGrid(dimensions=(2, 2, 1))
 |      >>> mesh.add_field_data(['I could', 'write', 'notes', 'here'],
 |      ...                      'my-field-data')
 |      >>> mesh['my-field-data']
 |      pyvista_ndarray(['I could', 'write', 'notes', 'here'], dtype='<U7')
 |
 |      Add field data to a MultiBlock dataset.
 |
 |      >>> blocks = pyvista.MultiBlock()
 |      >>> blocks.append(pyvista.Sphere())
 |      >>> blocks["cube"] = pyvista.Cube(center=(0, 0, -1))
 |      >>> blocks.add_field_data([1, 2, 3], 'my-field-data')
 |      >>> blocks.field_data['my-field-data']
 |      pyvista_ndarray([1, 2, 3])
 |
 |  clear_field_data(self)
 |      Remove all field data.
 |
 |      Examples
 |      --------
 |      Add field data to a PolyData dataset and then remove it.
 |
 |      >>> import pyvista
 |      >>> mesh = pyvista.Sphere()
 |      >>> mesh.field_data['my-field-data'] = range(10)
 |      >>> len(mesh.field_data)
 |      1
 |      >>> mesh.clear_field_data()
 |      >>> len(mesh.field_data)
 |      0
 |
 |  copy(self, deep=True)
 |      Return a copy of the object.
 |
 |      Parameters
 |      ----------
 |      deep : bool, optional
 |          When ``True`` makes a full copy of the object.  When
 |          ``False``, performs a shallow copy where the points, cell,
 |          and data arrays are references to the original object.
 |
 |      Returns
 |      -------
 |      pyvista.DataSet
 |          Deep or shallow copy of the input.  Type is identical to
 |          the input.
 |
 |      Examples
 |      --------
 |      Create and make a deep copy of a PolyData object.
 |
 |      >>> import pyvista
 |      >>> mesh_a = pyvista.Sphere()
 |      >>> mesh_b = mesh_a.copy()
 |      >>> mesh_a == mesh_b
 |      True
 |
 |  copy_attributes(self, dataset: vtkmodules.vtkCommonDataModel.vtkDataSet)
 |      Copy the data attributes of the input dataset object.
 |
 |      Parameters
 |      ----------
 |      dataset : pyvista.DataSet
 |          Dataset to copy the data attributes from.
 |
 |      Examples
 |      --------
 |      >>> import pyvista as pv
 |      >>> source = pv.UniformGrid(dimensions=(10, 10, 5))
 |      >>> source = source.compute_cell_sizes()
 |      >>> target = pv.UniformGrid(dimensions=(10, 10, 5))
 |      >>> target.copy_attributes(source)
 |      >>> target.plot(scalars='Volume', show_edges=True)
 |
 |  copy_structure(self, dataset: vtkmodules.vtkCommonDataModel.vtkDataSet)
 |      Copy the structure (geometry and topology) of the input dataset object.
 |
 |      Parameters
 |      ----------
 |      dataset : vtk.vtkDataSet
 |          Dataset to copy the geometry and topology from.
 |
 |      Examples
 |      --------
 |      >>> import pyvista as pv
 |      >>> source = pv.UniformGrid(dimensions=(10, 10, 5))
 |      >>> target = pv.UniformGrid()
 |      >>> target.copy_structure(source)
 |      >>> target.plot(show_edges=True)
 |
 |  deep_copy(self, to_copy: vtkmodules.vtkCommonDataModel.vtkDataObject) -> vtkmodules.vtkCommonDataModel.vtkDataObject
 |      Overwrite this data object with another data object as a deep copy.
 |
 |      Parameters
 |      ----------
 |      to_copy : pyvista.DataObject or vtk.vtkDataObject
 |          Data object to perform a deep copy from.
 |
 |  head(self, display=True, html=None)
 |      Return the header stats of this dataset.
 |
 |      If in IPython, this will be formatted to HTML. Otherwise
 |      returns a console friendly string.
 |
 |      Parameters
 |      ----------
 |      display : bool, optional
 |          Display this header in iPython.
 |
 |      html : bool, optional
 |          Generate the output as HTML.
 |
 |      Returns
 |      -------
 |      str
 |          Header statistics.
 |
 |  save(self, filename: str, binary=True, texture=None)
 |      Save this vtk object to file.
 |
 |      Parameters
 |      ----------
 |      filename : str, pathlib.Path
 |          Filename of output file. Writer type is inferred from
 |          the extension of the filename.
 |
 |      binary : bool, optional
 |          If ``True``, write as binary.  Otherwise, write as ASCII.
 |
 |      texture : str, np.ndarray, optional
 |          Write a single texture array to file when using a PLY
 |          file.  Texture array must be a 3 or 4 component array with
 |          the datatype ``np.uint8``.  Array may be a cell array or a
 |          point array, and may also be a string if the array already
 |          exists in the PolyData.
 |
 |          If a string is provided, the texture array will be saved
 |          to disk as that name.  If an array is provided, the
 |          texture array will be saved as ``'RGBA'``
 |
 |          .. note::
 |             This feature is only available when saving PLY files.
 |
 |      Notes
 |      -----
 |      Binary files write much faster than ASCII and have a smaller
 |      file size.
 |
 |  shallow_copy(self, to_copy: vtkmodules.vtkCommonDataModel.vtkDataObject) -> vtkmodules.vtkCommonDataModel.vtkDataObject
 |      Shallow copy the given mesh to this mesh.
 |
 |      Parameters
 |      ----------
 |      to_copy : pyvista.DataObject or vtk.vtkDataObject
 |          Data object to perform a shallow copy from.
 |
 |  ----------------------------------------------------------------------
 |  Readonly properties inherited from pyvista.core.dataobject.DataObject:
 |
 |  actual_memory_size
 |      Return the actual size of the dataset object.
 |
 |      Returns
 |      -------
 |      int
 |          The actual size of the dataset object in kibibytes (1024
 |          bytes).
 |
 |      Examples
 |      --------
 |      >>> from pyvista import examples
 |      >>> mesh = examples.load_airplane()
 |      >>> mesh.actual_memory_size  # doctest:+SKIP
 |      93
 |
 |  field_data
 |      Return FieldData as DataSetAttributes.
 |
 |      Use field data when size of the data you wish to associate
 |      with the dataset does not match the number of points or cells
 |      of the dataset.
 |
 |      Examples
 |      --------
 |      Add field data to a PolyData dataset and then return it.
 |
 |      >>> import pyvista
 |      >>> import numpy as np
 |      >>> mesh = pyvista.Sphere()
 |      >>> mesh.field_data['my-field-data'] = np.arange(10)
 |      >>> mesh.field_data['my-field-data']
 |      pyvista_ndarray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
 |
 |  memory_address
 |      Get address of the underlying VTK C++ object.
 |
 |      Returns
 |      -------
 |      str
 |          Memory address formatted as ``'Addr=%p'``.
 |
 |      Examples
 |      --------
 |      >>> import pyvista
 |      >>> mesh = pyvista.Sphere()
 |      >>> mesh.memory_address
 |      'Addr=...'
 |
 |  ----------------------------------------------------------------------
 |  Data and other attributes inherited from pyvista.core.dataobject.DataObject:
 |
 |  __annotations__ = {'_WRITERS': typing.Dict[str, typing.Union[typing.Ty...
 |
 |  __hash__ = None

Here are some example 3D data using random data. Feel free to use your own 3D numpy array here!

arr = np.random.random((100, 100, 100))
arr.shape
(100, 100, 100)

Create the pyvista.UniformGrid

Hint, you will likely need to ravel the array with F-ordering: arr.ravel(order="F")

vol = pv.UniformGrid()
vol.dimensions = arr.shape
vol['array'] = arr.ravel(order="F")
c create uniform grid

Example#

Here are some examples of this kind of data in PyVista!

See the PyVista documentation for further details on Volume Rendering

from pyvista import examples

vol = examples.download_knee_full()

p = pv.Plotter()
p.add_volume(vol, cmap="bone", opacity="sigmoid")
p.show()
c create uniform grid
vol = pv.Wavelet()
vol.plot(volume=True)
c create uniform grid

Total running time of the script: ( 0 minutes 5.528 seconds)

Gallery generated by Sphinx-Gallery