.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "tutorial/04_filters/solutions/c_compute-normals.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_tutorial_04_filters_solutions_c_compute-normals.py: .. _surface_normal_example: Computing Surface Normals ~~~~~~~~~~~~~~~~~~~~~~~~~ Compute normals on a surface. .. GENERATED FROM PYTHON SOURCE LINES 10-18 .. code-block:: Python import numpy as np from pyvista import examples mesh = examples.download_topo_global() mesh.plot(cmap="gist_earth", show_scalar_bar=False) .. tab-set:: .. tab-item:: Static Scene .. image-sg:: /tutorial/04_filters/solutions/images/sphx_glr_c_compute-normals_001.png :alt: c compute normals :srcset: /tutorial/04_filters/solutions/images/sphx_glr_c_compute-normals_001.png :class: sphx-glr-single-img .. tab-item:: Interactive Scene .. offlineviewer:: /home/runner/work/pyvista-tutorial/pyvista-tutorial/doc/source/tutorial/04_filters/solutions/images/sphx_glr_c_compute-normals_001.vtksz .. GENERATED FROM PYTHON SOURCE LINES 20-26 Now we have a surface dataset of the globe loaded - unfortunately, the dataset shows the globe with a uniform radius which hides topographic relief. Using :func:`pyvista.PolyData.compute_normals`, we can compute the normal vectors on the globe at all points in the dataset, then use the values given in the dataset to warp the surface in the normals direction to create some exaggerated topographic relief. .. GENERATED FROM PYTHON SOURCE LINES 26-30 .. code-block:: Python # Compute the normals in-place and use them to warp the globe mesh.compute_normals(inplace=True) # this activates the normals as well .. raw:: html
HeaderData Arrays
PolyDataInformation
N Cells2333880
N Points2336041
N Strips0
X Bounds-1.000e+00, 1.000e+00
Y Bounds-1.000e+00, 1.000e+00
Z Bounds-1.000e+00, 1.000e+00
N Arrays3
NameFieldTypeN CompMinMax
altitudePointsfloat321-1.042e+046.527e+03
NormalsPointsfloat323-1.000e+001.000e+00
NormalsCellsfloat323-1.000e+001.000e+00


.. GENERATED FROM PYTHON SOURCE LINES 31-32 Now use those normals to warp the surface .. GENERATED FROM PYTHON SOURCE LINES 32-34 .. code-block:: Python warp = mesh.warp_by_scalar(factor=0.5e-5) .. GENERATED FROM PYTHON SOURCE LINES 35-36 And let's see it! .. GENERATED FROM PYTHON SOURCE LINES 36-39 .. code-block:: Python warp.plot(cmap="gist_earth", show_scalar_bar=False) .. tab-set:: .. tab-item:: Static Scene .. image-sg:: /tutorial/04_filters/solutions/images/sphx_glr_c_compute-normals_002.png :alt: c compute normals :srcset: /tutorial/04_filters/solutions/images/sphx_glr_c_compute-normals_002.png :class: sphx-glr-single-img .. tab-item:: Interactive Scene .. offlineviewer:: /home/runner/work/pyvista-tutorial/pyvista-tutorial/doc/source/tutorial/04_filters/solutions/images/sphx_glr_c_compute-normals_002.vtksz .. GENERATED FROM PYTHON SOURCE LINES 40-43 We could also use face or cell normals to extract all the faces of a mesh facing a general direction. In the following snippet, we take a mesh, compute the normals along its cell faces, and extract the faces that face upward. .. GENERATED FROM PYTHON SOURCE LINES 43-62 .. code-block:: Python mesh = examples.download_nefertiti() # Compute normals mesh.compute_normals(cell_normals=True, point_normals=False, inplace=True) # Get list of cell IDs that meet condition ids = np.arange(mesh.n_cells)[mesh["Normals"][:, 2] > 0.0] # Extract those cells top = mesh.extract_cells(ids) cpos = [ (-834.3184529757553, -918.4677714398535, 236.5468795300025), (11.03829376004883, -13.642289291587957, -35.91218884207208), (0.19212361465657216, 0.11401076390090074, 0.9747256344254143), ] top.plot(cpos=cpos, color=True) .. tab-set:: .. tab-item:: Static Scene .. image-sg:: /tutorial/04_filters/solutions/images/sphx_glr_c_compute-normals_003.png :alt: c compute normals :srcset: /tutorial/04_filters/solutions/images/sphx_glr_c_compute-normals_003.png :class: sphx-glr-single-img .. tab-item:: Interactive Scene .. offlineviewer:: /home/runner/work/pyvista-tutorial/pyvista-tutorial/doc/source/tutorial/04_filters/solutions/images/sphx_glr_c_compute-normals_003.vtksz .. GENERATED FROM PYTHON SOURCE LINES 63-70 .. raw:: html
Open In Colab
.. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 42.297 seconds) .. _sphx_glr_download_tutorial_04_filters_solutions_c_compute-normals.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/pyvista/pyvista-tutorial/gh-pages?urlpath=lab/tree/notebooks/tutorial/04_filters/solutions/c_compute-normals.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: c_compute-normals.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: c_compute-normals.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: c_compute-normals.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_